【題目】如圖,AB是⊙O的直徑,CD切⊙O于點(diǎn)C,BE⊥CD于E,連接AC,BC.
(1)求證:BC平分∠ABE;
(2)若⊙O的半徑為3,cosA=,求CE的長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)切線的性質(zhì)得OC⊥DE,則可判斷OC∥BE,根據(jù)平行線的性質(zhì)得∠OCB=∠CBE,加上∠OCB=∠CBO,所以∠OBC=∠CBE;
(2)由已知數(shù)據(jù)可求出AC,BC的長(zhǎng),易證△BEC∽△BCA,由相似三角形的性質(zhì)即可求出CE的長(zhǎng).
(1)證明:∵CD是⊙O的切線,
∴OC⊥DE,
而BE⊥DE,
∴OC∥BE,
∴∠OCB=∠CBE,
而OB=OC,
∴∠OCB=∠CBO,
∴∠OBC=∠CBE,
即BC平分∠ABE;
(2)∵⊙O的半徑為3,
∴AB=6,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵cosA=,
∴=,
∴AC=2,
∴BC==2,
∵∠ABC=∠ECB,∠ACB=∠BEC=90°,
∴△BEC∽△BCA,
∴=,
即=,
∴CE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商店購(gòu)進(jìn)一批乒乓球拍,每件進(jìn)價(jià)為10元,售價(jià)為30元,每星期可賣出40件.商家決定降價(jià)促銷,根據(jù)市場(chǎng)調(diào)查,每降價(jià)1元,每星期可多賣出4件.
(1)求商家降價(jià)前每星期的銷售利潤(rùn)為多少元?
(2)降價(jià)后,商家要使每星期的銷售利潤(rùn)最大,應(yīng)將售價(jià)定為多少元?最大銷售利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=(x+m)2+k的圖象,其頂點(diǎn)坐標(biāo)為M(1,﹣4)
(1)求出圖象與x軸的交點(diǎn)A、B的坐標(biāo);
(2)在二次函數(shù)的圖象上是否存在點(diǎn)P,使S△PAB=S△MAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線交正半軸于點(diǎn),將拋物線先向右平移3個(gè)單位,再向上平移3個(gè)單位得到拋物線,與交于點(diǎn),直線交于點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)是拋物線上間的一點(diǎn),作軸交拋物線于點(diǎn),連接,.設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)為何值時(shí),使的面積最大,并求出最大值;
(3)如圖2,將直線向下平移,交拋物線于點(diǎn),,交拋物線于點(diǎn),,則的值是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE、BE是△ABC的兩個(gè)內(nèi)角的平分線,過點(diǎn)A作AD⊥AE.交BE的延長(zhǎng)線于點(diǎn)D.若AD=AB,BE:ED=1:2,則cos∠ABC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點(diǎn)E,連接AC、OC、BC
(1)求證:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.任意給定一個(gè)正方形,一定存在另一個(gè)正方形,它的周長(zhǎng)和面積分別是已知正方形周長(zhǎng)和面積的一半
B.任意給定一個(gè)正方形,一定存在另一個(gè)正方形,它的周長(zhǎng)和面積分別是已知正方形周長(zhǎng)和面積的2倍
C.任意給定一個(gè)矩形,一定存在另一個(gè)矩形,它的周長(zhǎng)和面積分別是已知矩形周長(zhǎng)和面積的一半
D.任意給定一個(gè)矩形,一定存在另一個(gè)矩形,它的周長(zhǎng)和面積分別是已知矩形周長(zhǎng)和面積的2倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.
(1)求∠CDE的度數(shù);
(2)求證:DF是⊙O的切線;
(3)若AC=2DE,求tan∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠色植物銷售公司打算銷售某品種的“賞葉植物”,在針對(duì)這種“賞葉植物”進(jìn)行市場(chǎng)調(diào)查后,繪制了以下兩張函數(shù)圖象.其中圖①為一條直線,圖②為一條拋物線,且拋物線頂點(diǎn)為(6,1),請(qǐng)根據(jù)圖象解答下列問題:
(1)如果公司在3月份銷售這種“賞葉植物”,單株獲利多少元;
(2)請(qǐng)直接寫出圖象①中直線的解析式;
(3)請(qǐng)你求出公司在哪個(gè)月銷售這種“賞葉植物”,單株獲利最大?(備注:?jiǎn)沃戢@利=單株售價(jià)﹣單株成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com