(2010•麗江)如圖,已知矩形ABCD的面積為1.A1、B1、C1、D1分別為AB、BC、CD、DA的中點,若四邊形A1B1C1D1的面積為S1,A2、B2、C2、D2分別為A1B1、B1C1、C1D1、D1A1的中點,四邊形A2B2C2D2的面積記為S2,…,依此類推,第n個四邊形AnBnCnDn的面積記為Sn,則Sn=   
【答案】分析:首先探求四邊形A1B1C1D1的面積和矩形ABCD的面積關(guān)系:連接BD,根據(jù)三角形的中位線定理,得A1D1∥BD,A1D1=BD,則△AA1D1∽△ABD,且面積比是,進(jìn)而得到四邊形A1B1C1D1的面積為矩形ABCD的面積的一半,即.推而廣之,則Sn=
解答:解:連接BD.
根據(jù)三角形的中位線定理,得
A1D1∥BD,A1D1=BD,
∴△AA1D1∽△ABD,且面積比是
∴四邊形A1B1C1D1的面積為矩形ABCD的面積的一半,即
推而廣之,則Sn=
點評:此題主要是運用了三角形的中位線定理以及相似三角形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是矩形,點A、B的坐標(biāo)分別為A(-4,0)、B(-4,2).
(1)現(xiàn)將矩形OABC繞點O順時針方向旋轉(zhuǎn)90°后得到矩形OA1B1C1,請畫出矩形OA1B1C1;
(2)畫出直線BC1,并求直線BC1的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省臨滄中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是矩形,點A、B的坐標(biāo)分別為A(-4,0)、B(-4,2).
(1)現(xiàn)將矩形OABC繞點O順時針方向旋轉(zhuǎn)90°后得到矩形OA1B1C1,請畫出矩形OA1B1C1
(2)畫出直線BC1,并求直線BC1的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省麗江中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標(biāo)分別是A(-1,0)、B(4,0),點C在y軸的負(fù)半軸上,且∠ACB=90°
(1)求點C的坐標(biāo);
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設(shè)運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省迪慶中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標(biāo)分別是A(-1,0)、B(4,0),點C在y軸的負(fù)半軸上,且∠ACB=90°
(1)求點C的坐標(biāo);
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設(shè)運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省大理中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標(biāo)分別是A(-1,0)、B(4,0),點C在y軸的負(fù)半軸上,且∠ACB=90°
(1)求點C的坐標(biāo);
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設(shè)運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案