【題目】解方程
(1)x2-7x+6=0
(2)(5x-1)2=3(5x-1)
(3) x2-4x-3=0 (用配方法)
(4) x2+4x+2=0(用公式法)
【答案】(1)x1=1,x2=6;(2)x1=0.2,x2=0.8;(3)x1=2+,x2=2-;(4)x1=-2+,x2=-2-.
【解析】
(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;
(2)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可;
(3)移項,配方,開方,即可得出兩個一元一次方程,求出方程的解即可;
(4)求出的值,再代入公式求出即可.
(1)解:(x-1)(x-6)=0
x1=1,x2=6
(2)解:(5x-1)-3(5x-1)=0
(5x-1)(5x-4)=0
x1=0.2,x2=0.8
(3)解:x2-4x+4=3+4
(x-2)2=7
x-2=±
x1=2+,x2=2-
(4)解:△=16-4×2=8
x=
x1=-2+,x2=-2-.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)請直接寫出D點的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②均是8×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點,點A、B、M、N均落在格點上,在圖①、圖②給定的網(wǎng)格中按要求作圖.
(1)在圖①中的格線MN上確定一點P,使PA與PB的長度之和最小
(2)在圖②中的格線MN上確定一點Q,使∠AQM=∠BQM.
要求:只用無刻度的直尺,保留作圖痕跡,不要求寫出作法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙A的半徑為1,圓心A點的坐標(biāo)為(1,﹣2).直線OM是一次函數(shù)y=x的圖像.讓⊙A沿y軸正方向以每秒1個單位長度移動,移動時間為t.
(1)填空:
①直線OM與x軸所夾的銳角度數(shù)為 °;
②當(dāng)t= 時,⊙A與坐標(biāo)軸有兩個公共點;
(2)求出運動過程中⊙A與直線OM相切時的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:
數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.
理解:
⑴如圖,已知是⊙上兩點,請在圓上找出滿足條件的點,使為“智慧三角形”(畫出點的位置,保留作圖痕跡);
⑵如圖,在正方形中,是的中點,是上一點,且,試判斷是否為“智慧三角形”,并說明理由;
運用:
⑶如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點是直線上的一點,若在⊙上存在一點,使得為“智慧三角形”,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2016的坐標(biāo)為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;
(2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠A=x°,∠B=y°,則y與x之間的關(guān)系式為_____________________________;
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com