【題目】乘法公式的探究及應(yīng)用.
(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個(gè)矩形,它的寬是 ,長是 ,面積是 (寫成多項(xiàng)式乘法的形式);
(3)比較圖1、圖2陰影部分的面積,可以得到公式 ;
(4)運(yùn)用你所得到的公式,計(jì)算下列各題:
① 20.2×19.8 ;
②.
【答案】(1)a2b2;(2)ab,a+b,(a+b)(ab);(3)(a+b)(ab)=a2b2;(4)①99.96;②4m2n2+2npp2.
【解析】
(1)利用正方形的面積公式就可求出;
(2)仔細(xì)觀察圖形就會(huì)知道長,寬,由面積公式就可求出面積;
(3)建立等式就可得出;
(4)利用平方差公式就可方便簡單的計(jì)算.
(1)利用正方形的面積公式可知:陰影部分的面積=a2b2;
故答案為:a2b2;
(2)由圖可知矩形的寬是ab,長是a+b,所以面積是(a+b)(ab);
故答案為:ab,a+b,(a+b)(ab);
(3)(a+b)(ab)=a2b2(等式兩邊交換位置也可);
故答案為:(a+b)(ab)=a2b2;
(4)①解:原式=(10+0.2)×(100.2),
=1020.22,
=1000.04,
=99.96;
②解:原式=[2m+(np)][2m(np)],
=(2m)2(np)2,
=4m2n2+2npp2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場同時(shí)出售同樣的水瓶和水杯,且定價(jià)相同,請根據(jù)圖中提供的信息,回答下列問題:
(1)一個(gè)水瓶與一個(gè)水杯分別是多少元?(請列方程解應(yīng)用題)
(2)為了迎接新年,兩家商場都在搞促銷活動(dòng),甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個(gè)水瓶贈(zèng)送兩個(gè)水杯,另外購買的水杯按原價(jià)賣.若某單位想要買5個(gè)水瓶和12個(gè)水杯,請問選擇哪家商場購買更合算,并說明理由(水瓶和水杯必須在同一家購買).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中,AB為⊙O的直徑,AB=4,P為AB上一點(diǎn),過點(diǎn)P作⊙O的弦CD,設(shè)∠BCD=m∠ACD.
(1)已知 ,求m的值,及∠BCD、∠ACD的度數(shù)各是多少?
(2)在(1)的條件下,且 ,求弦CD的長;
(3)當(dāng) 時(shí),是否存在正實(shí)數(shù)m,使弦CD最短?如果存在,求出m的值,如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD平分∠BAC,BD⊥AD,垂足為D,連接CD,若三角形△ABC內(nèi)有一點(diǎn)P,則點(diǎn)P落在△ADC內(nèi)(包括邊界的陰影部分)的概率為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點(diǎn)B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( )
A. 36 B. 12 C. 6 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,AB∥CD,點(diǎn)P在AB、CD外部,若∠B=60°,∠D=30°,則∠BPD= °;
(2)如圖2,AB∥CD,點(diǎn)P在AB、CD內(nèi)部,則∠B,∠BPD,∠D之間有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)在圖2中,將直線AB繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)M,如圖3,若∠BPD=86°,∠BMD=40°,求∠B+∠D的度數(shù).
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為2,點(diǎn)M是BC的中點(diǎn),P是線段MC上的一個(gè)動(dòng)點(diǎn)(不與M、C重合),以AB為直徑作⊙O,過點(diǎn)P作⊙O的切線,交AD于點(diǎn)F,切點(diǎn)為E.
(1)求證:OF∥BE;
(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長DC、FP交于點(diǎn)G,連接OE并延長交直線DC于H(圖2),問是否存在點(diǎn)P,使△EFO∽△EHG(E、F、O與E、H、G為對(duì)應(yīng)點(diǎn))?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)粒子在第一象限內(nèi)及x軸、y軸上運(yùn)動(dòng),在第一分鐘,它從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,0),第二分鐘,它從點(diǎn)(1,0)運(yùn)動(dòng)到點(diǎn)(1,1),而后它接著按圖中箭頭所示在與x軸,y軸平行的方向上來回運(yùn)動(dòng),且每分鐘移動(dòng)1個(gè)單位長度,那么在第2019分鐘時(shí),這個(gè)粒子所在位置的坐標(biāo)是( )
A. (44,5) B. (5,44) C. (44,6) D. (6,44)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識(shí)檢測車速,如圖,觀測點(diǎn)設(shè)在到縣城城南大道的距離為100米的點(diǎn)P處.這時(shí),一輛出租車由西向東勻速行駛,測得此車從A處行駛到B處所用的時(shí)間為4秒,且∠APO=60°,∠BPO=45°.
(1)求A、B之間的路程;
(2)請判斷此出租車是否超過了城南大道每小時(shí)60千米的限制速度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com