【題目】如圖,在RtABC中,∠ACB=90°AC=2,BC=4,點(diǎn)D為邊AB上一動(dòng)點(diǎn),DEACDFBC,垂足為EF. 連接EF,CD.

1)求證:EFCD;

2)當(dāng)EF為何值時(shí),EFAB

3)當(dāng)四邊形ECFD為正方形時(shí),求EF的值.

【答案】1)證明見(jiàn)解析;(2;(3.

【解析】

1)根據(jù)已知條件可證明四邊形的DECF是矩形,即可得證;

2)由勾股定理求得AB的值,再由三角形中位線定理求得EF的值;

3)當(dāng)四邊形ECFD為正方形時(shí),證明AED∽△DFB求得正方形的邊長(zhǎng),再由勾股定理求出EF的長(zhǎng)即可.

1)∵DEACDFBC,

∴∠DEC=DFC=90°,

又∵∠ACB=90°

∴四邊形DECF是矩形,

EF=CD;

2)如圖,

RtABC中,∠ACB=90°,AC=2,BC=4,

AB=,

∵當(dāng)EFABC的中位線時(shí),EFAB,

EF=;

3)當(dāng)ECFD為正方形時(shí),

DE=EC=CF=FD,DEBC,

∴∠ADE=ABC,

∵∠AED=DFB=90°

∴△AED∽△DFB,

設(shè)DF=x,則DE=x,AE=2-x,BF=4-x,

,解得,x=

DE=DF=

EF=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸、軸分別相交于.點(diǎn)的坐標(biāo)為,點(diǎn)是線段上的一點(diǎn).

1)求的值;(2)若的面積為2,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:如圖1,與直線都相切.不論如何轉(zhuǎn)動(dòng),直線之間的距離始終保持不變(等于的半徑).我們把具有這一特性的圖形稱為等寬曲線.圖2是利用圓的這一特性的例子.將等直徑的圓棍放在物體下面,通過(guò)圓棍滾動(dòng),用較小的力就可以推動(dòng)物體前進(jìn).據(jù)說(shuō),古埃及就是利用只有的方法將巨石推到金字塔頂?shù)?

拓展應(yīng)用:如圖3所示的弧三角形(也稱為萊洛三角形)也是等寬曲線.如圖4,夾在平行線之間的萊洛三角形無(wú)論怎么滾動(dòng),平行線間的距離始終不變.若直線之間的距離等于,則萊洛三角形的周長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有依次3個(gè)數(shù):2、9、7.對(duì)任意相鄰的兩個(gè)數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個(gè)數(shù)之間,可產(chǎn)生一個(gè)新數(shù)串:2、79、-27,這稱為第1次操作,做第2次同樣的操作后也可以產(chǎn)生一個(gè)新數(shù)串:2、5、72、9、-11、-2、9、7,繼續(xù)依次操作下去,問(wèn)從數(shù)串2、9、7開(kāi)始操作第20次后所產(chǎn)生的那個(gè)數(shù)串的所有數(shù)之和是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:

小紅同學(xué)在學(xué)習(xí)過(guò)程中遇到這樣一道計(jì)算題計(jì)算4×2.1124×2.11×2.222.222,她覺(jué)得太麻煩,估計(jì)應(yīng)該有可以簡(jiǎn)化計(jì)算的方法,就去請(qǐng)教崔老師.崔老師說(shuō):你完成下面的問(wèn)題后就可能知道該如何簡(jiǎn)化計(jì)算啦!

獲取新知:

請(qǐng)你和小紅一起完成崔老師提供的問(wèn)題:

1)填寫下表:

x=-1,y1

x1,y0

x3,y2

x2,y=-1

x2y3

A2xy

3

2

4

5

1

B4x24xyy2

9

4

16

2)觀察表格,你發(fā)現(xiàn)AB有什么關(guān)系?

解決問(wèn)題:

3)請(qǐng)利用AB之間的關(guān)系計(jì)算:4×2.1124×2.11×2.222.222

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×qp,q是正整數(shù),且pq,在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:Fn=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有Fm=1.

2如果一個(gè)兩位正整數(shù)t,t=10x+y1xy9,x,y為自然數(shù),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為吉祥數(shù),求所有吉祥數(shù)中Ft的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過(guò)點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.

(1)求證:DF⊥AC;

(2)若⊙O的半徑為5,∠CDF=30°,求的長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BEAD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為(

A. 62°B. 56°C. 31°D. 28°

查看答案和解析>>

同步練習(xí)冊(cè)答案