【題目】如圖,正方形的邊長是4的平分線交于點(diǎn),若點(diǎn)分別是上的動(dòng)點(diǎn),則的最小值是__________

【答案】

【解析】

的垂線交F,交ACD′,再過D′作D′P′AD,由角平分線的性質(zhì)可得出D′是D關(guān)于AE的對稱點(diǎn),進(jìn)而可知D′P′即為DQ+PQ的最小值.

解:過的垂線交F,交ACD′,再過D′作D′P′AD,如下圖,

DD′AE

∴∠AFD=AFD′,

AF=AF,∠DAE=CAE,

∴△DAF≌△D′AF

D′D關(guān)于AE的對稱點(diǎn),AD′=AD=4,

D′P′即為DQ+PQ的最小值,

∵四邊形ABCD是正方形,
∴∠DAD′=45°

AP′=P′D′,

RtAP′D′中,
P′D′2+AP′2=AD′2,AD′2=16,
AP′=P′D',
2P′D′2=AD′2,即2P′D′2=16,
P′D′=,

的最小值是

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30°,且r1=1時(shí),r2018_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中, 的中點(diǎn),連接并延長交的延長線于點(diǎn),點(diǎn)在邊上,且

1)求證:

2)連接,判斷的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AB=3AC=4,BC=5,分別以ABAC、BC為邊在BC的同側(cè)作等邊△ABD,等邊△ACE、等邊△BCF

1)求證:四邊形DAEF是平行四邊形;

2)求四邊形DAEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,AB=AC,∠ABC =,DBC邊上一點(diǎn),以AD為邊作,使AE=AD,+=180°

1)直接寫出∠ADE的度數(shù)(用含的式子表示);

2)以ABAE為邊作平行四邊形ABFE,

如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD;

如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點(diǎn)M,與BC相交于點(diǎn)N.連接BM,DN

(1)求證:四邊形BMDN是菱形;

(2)AB=4,AD=8,求MD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)三班同學(xué)們就該校學(xué)生如何到校問題進(jìn)行了一次調(diào)查,并將調(diào)查結(jié)果制成了條形圖和扇形統(tǒng)計(jì)圖,請你根據(jù)圖表信息完成下列各題:

1)此次共調(diào)查了___________位學(xué)生.

2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)這個(gè)學(xué)校有1000名學(xué)生,估計(jì)坐公交車的人有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,完全相同的兩個(gè)菱形ABCDECGF的頂點(diǎn)C重合,∠B=F,點(diǎn)E恰好在邊AD上,延長EDFG于點(diǎn)H

1)求證:∠B=ECB;

2)連接BECH

①試判斷四邊形BEHC的形狀,并說理理由;

②求證:CH平分DCG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某柜臺銷售每臺進(jìn)價(jià)分別為160元、120元的AB兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

4

1200

第二周

5

6

1900

(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入進(jìn)貨成本)

(1)AB兩種型號的電風(fēng)扇的銷售單價(jià);

(2)若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號的電風(fēng)扇共50臺,請問商場銷售完這50臺電風(fēng)扇能否實(shí)現(xiàn)利潤超過1850元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案