【題目】(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),連結(jié)DF、CF.
(1)如圖1, 當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請(qǐng)直接寫出此時(shí)線段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°時(shí),請(qǐng)你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°時(shí),若AD=1,AC=,求此時(shí)線段CF的長(zhǎng)(直接寫出結(jié)果).
【答案】(1)相等和垂直;(2)成立,理由見試題解析;(3).
【解析】
試題分析:(1)根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”可知DF=BF,根據(jù)∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF.
(2)延長(zhǎng)DF交BC于點(diǎn)G,先證明△DEF≌△GCF,得到DE=CG,DF=FG,根據(jù)AD=DE,AB=BC,得到BD=BG又因?yàn)?/span>∠ABC=90°,所以DF=CF且DF⊥BF.
(3)延長(zhǎng)DF交BA于點(diǎn)H,先證明△DEF≌△HBF,得到DE=BH,DF=FH,根據(jù)旋轉(zhuǎn)條件可以△ADH為直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,進(jìn)而可以根據(jù)勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.
試題解析:(1)∵∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),∴DF=BE,CF=BE,∴DF=CF.
∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°,
∵BF=DF,∴∠DBF=∠BDF,
∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF,
同理得:∠CFE=2∠CBF,
∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,∴DF=CF,且DF⊥CF.
(2)(1)中的結(jié)論仍然成立.
證明:如圖,此時(shí)點(diǎn)D落在AC上,延長(zhǎng)DF交BC于點(diǎn)G.
∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F為BE中點(diǎn),∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.
∵AD=DE,∴AD=GB,
∵AC=BC,∴AC﹣AD=BC﹣GB,∴DC=GC.
∵∠ACB=90°,∴△DCG是等腰直角三角形,
∵DF=GF,∴DF=CF,DF⊥CF.
(3)延長(zhǎng)DF交BA于點(diǎn)H,
∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°,
∵由旋轉(zhuǎn)可以得出,∠CAE=∠BAD=90°,
∵AE∥BC,∴∠AEB=∠CBE,∴∠DEF=∠HBF.
∵F是BE的中點(diǎn),∴EF=BF,∴△DEF≌△HBF,∴ED=HB,
∵AC=,在Rt△ABC中,由勾股定理,得:AB=4,
∵AD=1,∴ED=BH=1,∴AH=3,在Rt△HAD中由勾股定理,得:DH=,
∴DF=,∴CF=,∴線段CF的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點(diǎn)A在直線PQ上運(yùn)動(dòng),點(diǎn)B在直線MN上運(yùn)動(dòng).
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)A,B在運(yùn)動(dòng)的過程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)A,B在運(yùn)動(dòng)的過程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長(zhǎng)BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長(zhǎng)線相交于E,F(xiàn),在△AEF中,如果有一個(gè)角是另一個(gè)角的3倍,試求∠ABO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.
(1)求證:AE=EF;
(2)如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,(1)中的結(jié)論是否仍然成立? ;(填“成立”或“不成立”);
(3)如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)證明,若不成立說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸上.
(1)、求的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)、P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E點(diǎn),設(shè)線段PE的長(zhǎng)為,點(diǎn)P的橫坐標(biāo)為,求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)、D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在一點(diǎn)P,使得四邊形DCEP是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請(qǐng)?jiān)诘谌笙迌?nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了改善市區(qū)交通狀況,計(jì)劃修建一座新大橋,如圖,新大橋的兩端位于A、B兩點(diǎn),小張為了測(cè)量A、B之間的河寬,在垂直與新大橋AB的直線型道路l上測(cè)得如下數(shù)據(jù):∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的長(zhǎng)(精確到0.1米,sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2a3=a6
B.5a﹣2a=3a2
C.(a3)4=a12
D.(x+y)2=x2+y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年春季,蔬菜種植場(chǎng)在15公頃的大棚地里分別種植了茄子和西紅柿,總費(fèi)用是26.5萬(wàn)元.其中,種植茄子和西紅柿每公頃的費(fèi)用和每公頃獲利情況如表:
每公頃費(fèi)用(萬(wàn)元) | 每公頃獲利(萬(wàn)元) | |
茄子 | 1.7 | 2.4 |
西紅柿 | 1.8 | 2.6 |
請(qǐng)解答下列問題:
(1)求出茄子和西紅柿的種植面積各為多少公頃?
(2)種植場(chǎng)在這一季共獲利多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列去括號(hào)正確的是( )
A. a﹣(b﹣c)=a﹣b﹣c B. m﹣2(p﹣q)=m﹣2p+q
C. a+(b﹣c﹣2d)=a+b﹣c+2d D. x2﹣[﹣(﹣x+y)]=x2﹣x+y
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com