【題目】如圖,是等邊三角形,點為邊上一點,以為邊作等邊,連接.若,,則( )
A.B.C.D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=-x2-2x+3.
(1)將其配方成y=a(x-k)2+h的形式,并寫出它的開口方向、對稱軸及頂點坐標(biāo).
(2)在平面直角坐標(biāo)系中畫出函數(shù)的圖象,并觀察圖象,當(dāng)y≥0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A1、A2、…A2018在函數(shù)y=2x2位于第二象限的圖象上,點B1、B2,…,B2018在函數(shù)y=2x2位于第一象限的圖象上,點C1,C2,…,C2018在y軸的正半軸上,若四邊形OA1C1B1、C1A2C2B2,…,C2017A2018C2018B2018都是正方形,則正方形C2017A2018C2018B2018的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的表達(dá)式為:y=-3x+3,且直線l1與x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C.
(1)求點D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分.
(1)尺規(guī)作圖:作線段的垂直平分線;(要求:保留作圖痕跡,不寫作法)
(2)記直線與,的交點分別是點,,連接求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A、B分別是y軸正半軸和x軸正半軸上的點,OA=OB=a,a滿足等式2a﹣2×16=64.
(1)求點A的坐標(biāo);
(2)動點C從O點出發(fā)沿x軸負(fù)半軸方向勻動,速度為每秒2個單位長度,過點B作BD⊥AC于D,交y軸于點E,設(shè)C的運動時間為t,用含t的代數(shù)式表示線段AE的長.
(3)在(2)的條件下過點O作OF⊥BD于點F,交AB于點G,連接EG,是否存在t值,使∠AGE=∠OGB,若存在求出t值,若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB=AC,EF=EG,△ABC≌△EFG,AD⊥BC于點D,EH⊥FG于點H
(1) 直接寫出AD、EH的數(shù)量關(guān)系:___________________
(2) 將△EFG沿EH剪開,讓點E和點C重合
① 按圖2放置△EHG,將線段CD沿EH平移至HN,連接AN、GN,求證:AN⊥GN
② 按圖3放置△EHG,B、C(E)、H三點共線,連接AG交EH于點M.若BD=1,AD=3,求CM的長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,點E為AD邊上一點,連接BD、CE,CE與BD交于點F,且CE∥AB,若AB=8,CE=6,若△FCD的面積為2,則四邊形ABCD的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com