【題目】如果等式(x﹣3)2x﹣1=1,則x= .
【答案】 或4
【解析】解:①若2x﹣1=0, 解得x= ,
此時(shí)x﹣3=﹣2 ,
所以,x= 符合,
②若x﹣3=1,
解得x=4,
③若x﹣3=﹣1,
解得x=2,
此時(shí)2x﹣1=3,
所以,x=2符合,
綜上所述,x= 或4.
所以答案是: 或4.
【考點(diǎn)精析】關(guān)于本題考查的零指數(shù)冪法則和有理數(shù)的乘方,需要了解零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));有理數(shù)乘方的法則:1、正數(shù)的任何次冪都是正數(shù)2、負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí): (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時(shí): (-a)n =an 或 (a-b)n=(b-a)n才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在踐行“社會主義核心價(jià)值觀”演講比賽中,對名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:
組號 | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形統(tǒng)計(jì)圖來描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對應(yīng)的扇形的圓心角的度數(shù).
(3)將在第一組內(nèi)的兩名選手記為A1,A2,在第四組內(nèi)的兩名選手記為B1,B2, 從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了響應(yīng)國家陽光體育活動(dòng),選派部分學(xué)生參加足球、乒乓球、籃球、排球隊(duì)集訓(xùn).根據(jù)參加項(xiàng)目制成如下兩幅不完整的統(tǒng)計(jì)圖(要求每位同學(xué)只能選擇一種自己喜歡的球類,圖中用足球、乒乓球、籃球、排球代表喜歡這四種球類某種球類的學(xué)生人數(shù),請你根據(jù)圖中提供的信息解答下列問題:
(1)參加籃球隊(duì)的有 人,參加足球隊(duì)的人數(shù)占全部參加人數(shù)的 %.
(2)喜歡排球隊(duì)的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角是多少度?并補(bǔ)全頻數(shù)分布折線統(tǒng)計(jì)圖.
(3)若足球隊(duì)只剩一個(gè)集訓(xùn)名額,學(xué)生小明和小虎都想?yún)⒓幼闱蜿?duì),決定采用隨機(jī)摸球的方式確定參加權(quán),具體規(guī)則如下:一個(gè)不透明的袋子中裝著標(biāo)有數(shù)字1、2、3、4的四個(gè)完全相同的小球,小明隨機(jī)地從四個(gè)小球中摸出一球然后放回,小虎再隨機(jī)地摸出一球,若小明摸出的小球標(biāo)有數(shù)字比小虎摸出的小球標(biāo)有的數(shù)字大,則小明參加;若小明摸出的小球標(biāo)有數(shù)字比小虎摸出的小球標(biāo)有的數(shù)字小,則小虎參加,試分析這種規(guī)則對雙方是否公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,0)、B(b,0),且(a+4)2+|b﹣2|=0.
(1)求a、b的值.
(2)在y軸的正半軸上找一點(diǎn)C,使得三角形ABC的面積是15,求出點(diǎn)C的坐標(biāo).
(3)過(2)中的點(diǎn)C作直線MN∥x軸,在直線MN上是否存在點(diǎn)D,使得三角形ACD的面積是三角形ABC面積的 ?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,且AE=EF=FA.下列結(jié)論:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF , 其中正確的是①②③⑤(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于,兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)取何值時(shí),反比例函數(shù)的值大于一次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù).
(1)若該反比例函數(shù)的圖象與直線(≠0)只有一個(gè)公共點(diǎn),求的值;
(2)如圖,反比例函數(shù)的圖象記為曲線,將向左平移2個(gè)單位長度,得曲線,請?jiān)趫D中畫出,并直接寫出平移至處 所掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com