【題目】如圖,(圖1,圖2),四邊形ABCD是邊長為4的正方形,點E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點F,交BC的延長線于點N, FN⊥BC.

(1)若點E是BC的中點(如圖1),AE與EF相等嗎?

(2)點E在BC間運動時(如圖2),設BE=x,△ECF的面積為y。

①求y與x的函數(shù)關系式;

②當x取何值時,y有最大值,并求出這個最大值.

【答案】(1)AE=EF;(2)①y=-x2+2x(0<x<4),②當x=2,y最大值=2.

【解析】

(1)在AB上取一點G,使AG=EC,連接GE,利用ASA,易證得AGE≌△ECF,則可證得:AE=EF;

(2)同(1)可證明AE=EF,利用AAS證明ABE≌△ENF,根據(jù)全等三角形對應邊相等可得FN=BE,再表示出EC,然后利用三角形的面積公式即可列式表示出ECF的面積為y,然后整理再根據(jù)二次函數(shù)求解最值問題.

1)如圖,在AB上取AG=EC,

∵四邊形ABCD是正方形,

AB=BC,

有∵AG=EC ,BG=BE ,

又∵∠B=90°,

∴∠AGE=135°,

又∵∠BCD=90°,CP平分∠DCN,

∴∠ECF=135°,

∵∠BAE+AEB=90°,AEB+FEC=90°,

∴∠BAE=FEC,

AGEECF

,

∴△AGE≌△ECF,

AE=EF;

(2)①∵由(1)證明可知當E不是中點時同理可證AE=EF,

∵∠BAE=NEF,B=ENF=90°,

∴△ABE≌△ENF,

FN=BE=x,

SECF= (BC-BE)·FN,

y= x(4-x),

y=- x2+2x(0<x<4),

,

x=2,y最大值=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價2元收費;若每月用水量超過14噸,則超過部分每噸按市場價3.5元收費.小明家2月份用水20噸,交水費49元;3月份用水18噸,交水費42元.

(1)設每月用水量為x噸,應交水費為y元,請寫出yx之間的函數(shù)關系式;

(2)小明家5月份用水30噸,則他家應交水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某煤礦發(fā)生瓦斯爆炸,該地救援隊立即趕赴現(xiàn)場進行救援,救援隊利用生命探測儀在地面A,B兩個探測點探測到C處有生命跡象.已知A,B兩點相距6,探測線與地面的夾角分別是30°45°,試確定生命所在點C的深度.(精確到0.1,參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1、x2是一元二次方程2x2-2x+m+1=0的兩個實根.

(1)求實數(shù)m的取值范圍;

(2)如果m滿足不等式7+4x1x2>x12+x22,且m為整數(shù).求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某西瓜產(chǎn)地組織40輛汽車裝運完A,B,C三種西瓜共200噸到外地銷售.按計劃,40輛汽車都要裝運,每輛汽車只能裝運同一種西瓜,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:

西瓜種類

A

B

C

每輛汽車運載量(噸)

4

5

6

每噸西瓜獲利(百元)

16

10

12

1)設裝運A種西瓜的車輛數(shù)為x輛,裝運B種西瓜的車輛數(shù)為y輛,求yx的函數(shù)關系式;

2)如果裝運每種西瓜的車輛數(shù)都不少于10輛,那么車輛的安排方案有幾種?并寫出每種安排方案;

3)若要使此次銷售獲利達到預期利潤25萬元,應采取怎樣的車輛安排方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù))的圖象如圖所示,其對稱軸為,有下列結論;則正確的個數(shù)有(

;②;③;④;⑤;⑥若,則

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為6是邊上的一點,繞點逆時針旋轉后得到三點在同一直線上.

1)求四邊形的面積.

2)如果點在邊上,且,試判斷之間有什么樣的數(shù)量關系?并說明理由.

3)在(2)的條件下,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點A1A2、A3x軸上,且OA1=A1A2=A2A3,分別過點A1A2、A3y軸的平行線,與反比例函數(shù)y=x0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3x軸的平行線,分別與y軸交于點C1、C2C3,連接OB1OB2、OB3,若圖中三個陰影部分的面積之和為,則k=

查看答案和解析>>

同步練習冊答案