【題目】如圖,已知,且、、、四點在同一直線上.

1)在圖1中,請你用無刻度的直尺作出線段的垂直平分線;

2)在圖2中,請你用無刻度的直尺作出線段的垂直平分線.

【答案】1)圖見解析;(2)圖見解析.

【解析】

1)如圖1(見解析),設(shè)ACDF的交點為點O,BCEF的交點為點Q,連接OQ,并延長OQBE于點P,則OP即為所求;

2)如圖2(見解析),設(shè)ACDF的交點為點M,延長FE、CB,交于點G,連接AG、DG、MG,其中MGAD于點N,則MN即為所求.

1)如圖1,設(shè)ACDF的交點為點O,BCEF的交點為點Q,連接OQ,并延長OQBE于點P,則OP即為所求.說明如下:

,即

中,

O在線段BE的垂直平分線上

Q在線段BE的垂直平分線上

故圖中的OP為線段BE的垂直平分線;

2)如圖2,設(shè)ACDF的交點為點M,延長FECB,交于點G,連接AG、DG、MG,其中MGAD于點N,則MN即為所求.說明如下:

M在線段AD的垂直平分線上

,即

中,

G在線段AD的垂直平分線上

故圖中的MN為線段AD的垂直平分線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運30kg,A型機器人搬運900kgB型機器人搬運600kg所用時間相等,兩種機器人每小時分別搬運多少化工原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.

(1)求證:四邊形OCAD是平行四邊形;

(2)填空:①當(dāng)∠B= 時,四邊形OCAD是菱形;

②當(dāng)∠B= 時,AD與相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊿ABC中,∠B = 50,∠C = 70,AD是高,AE是角平分線,

1∠BAC=__________,∠DAC=__________.(填度數(shù))

2)求∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點上,過點的切線,延長,使,連接,與交于點.若的半徑為,,則的外接圓的半徑為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形,以BC為直徑的半圓O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若AE=1,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察猜想:

RtABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是   ,位置關(guān)系是   

(2)探究證明:

在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.

(3)拓展延伸:

如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點DDFADCE于點F,請直接寫出線段CF長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABBC2,以AB為直徑的⊙O分別交BC、AC于點D、E,且點DBC的中點.

1)求證:ABC為等邊三角形;

2)求DE的長;

3)在線段AB的延長線上是否存在一點P,使PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案