【題目】如圖,在邊長為6的正方形ABCD中,點(diǎn)E、FG分別在邊AB、AD、CD上,EGBF交于點(diǎn)I,AE=2BF=EG,DG>AE,則DI的最小值為________.

【答案】

【解析】

過點(diǎn)EEMCD于點(diǎn)M,取BE的中點(diǎn)O,連接OI、OD,根據(jù)HL證明RtBAFRtEMG,可得∠ABF=MEG,所以再證明∠EPF=90°,由直角三角形斜邊上的中線等于斜邊的一半可得OI=BE,由OD-OI≤DI,當(dāng)ODI共線時,DI有最小值,即可求DI的最小值.

如圖,過點(diǎn)EEMCD于點(diǎn)M,取BE的中點(diǎn)O,連接OI、OD,

∵四邊形ABCD是正方形,

AB=AD,∠A=D=DME=90°ABCD

∴四邊形ADME是矩形,

EM=AD=AB,

BF=EG

RtBAFRtEMGHL),

∴∠ABF=MEG,∠AFB=EGM,

ABCD

∴∠MGE=BEG=AFB

∵∠ABF+AFB=90°

∴∠ABF+BEG=90°

∴∠EIF=90°

BFEG;

∵△EIB是直角三角形,

OI=BE

AB=6,AE=2,

BE=6-2=4OB=OE=2

OD-OI≤DI,

∴當(dāng)O、DI共線時,DI有最小值,

IO=BE=2,

OD==2,

ID=2-2,即DI的最小值為2-2,

故答案為:2-2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)是菱形邊上一點(diǎn),點(diǎn)的延長線上

1)如圖,若,,求的度數(shù);

2)如圖,若的中點(diǎn),,求的值;

3)如圖,若,點(diǎn)是線段的中點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】車間有20名工人,某天他們生產(chǎn)的零件個數(shù)統(tǒng)計如下表.

車間20名工人某一天生產(chǎn)的零件個數(shù)統(tǒng)計表

生產(chǎn)零件的個數(shù)(個)

9

10

11

12

13

15

16

19

20

工人人數(shù)(人)

1

1

6

4

2

2

2

1

1

1)求這一天20名工人生產(chǎn)零件的平均個數(shù);

2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個“定額”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,已知ABC 中,C90°ACBC,將ABC 繞點(diǎn) A 順時針方向旋轉(zhuǎn) 60°得到A′B′C′的位置,連接 C′B,則 C′B 的長為 ( )

A.2B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+c(a0)的頂點(diǎn)M(1,﹣4a),且過點(diǎn)A(4t),與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),直線l經(jīng)過點(diǎn)A,B,交y軸交于點(diǎn)D.

(1)a=﹣1,當(dāng)2≤x4時,求y的范圍;

(2)若△MBC是等腰直角三角形,求△ABM的面積;

(3)點(diǎn)E是直線l上方的拋物線上的動點(diǎn),△BDE的面積的最大值為;設(shè)P是拋物線的對稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形能否為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是任意兩個不等實(shí)數(shù),我們規(guī)定:滿足不等式的實(shí)數(shù)的所有取值的全體叫做閉區(qū)間,表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.如函數(shù),當(dāng)時,;當(dāng)時,,即當(dāng)時,有,所以說函數(shù)是閉區(qū)間上的“閉函數(shù)”

1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;

2)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求的值;

3)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達(dá)式(可用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 中,∠C=90°,ADDB,點(diǎn) E AB 的中點(diǎn),DEBC

1)求證:BD 平分∠ABC;

2)連接 EC,若∠A =,DC=3,求 EC 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線yx+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C,D分別為線段AB,OB的中點(diǎn),點(diǎn)POA上一動點(diǎn),PCPD值最小時點(diǎn)P的坐標(biāo)為.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),已知,兩點(diǎn)的坐標(biāo)分別為,

1)求拋物線的表達(dá)式;

2)一動點(diǎn)從點(diǎn)出發(fā),沿線段以每秒1個單位長度的速度向點(diǎn)運(yùn)動,同時點(diǎn)從點(diǎn)出發(fā),沿線段以每秒1個單位長度的速度向點(diǎn)運(yùn)動,當(dāng)點(diǎn)運(yùn)動到點(diǎn)時,點(diǎn)隨之停止運(yùn)動.設(shè)運(yùn)動時間為秒,當(dāng)為何值時以、、為頂點(diǎn)的三角形與相似?

3)若點(diǎn)軸上一動點(diǎn),點(diǎn)是拋物線上一動點(diǎn),試判斷是否存在以點(diǎn),,為頂點(diǎn)的四邊形是平行四邊形.若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案