【題目】如圖,在邊長為6的正方形ABCD中,點(diǎn)E、F、G分別在邊AB、AD、CD上,EG與BF交于點(diǎn)I,AE=2,BF=EG,DG>AE,則DI的最小值為________.
【答案】
【解析】
過點(diǎn)E作EM⊥CD于點(diǎn)M,取BE的中點(diǎn)O,連接OI、OD,根據(jù)HL證明Rt△BAF≌Rt△EMG,可得∠ABF=∠MEG,所以再證明∠EPF=90°,由直角三角形斜邊上的中線等于斜邊的一半可得OI=BE,由OD-OI≤DI,當(dāng)O、D、I共線時,DI有最小值,即可求DI的最小值.
如圖,過點(diǎn)E作EM⊥CD于點(diǎn)M,取BE的中點(diǎn)O,連接OI、OD,
∵四邊形ABCD是正方形,
∴AB=AD,∠A=∠D=∠DME=90°,AB∥CD,
∴四邊形ADME是矩形,
∴EM=AD=AB,
∵BF=EG,
∴Rt△BAF≌Rt△EMG(HL),
∴∠ABF=∠MEG,∠AFB=∠EGM,
∵AB∥CD
∴∠MGE=∠BEG=∠AFB
∵∠ABF+∠AFB=90°
∴∠ABF+∠BEG=90°
∴∠EIF=90°,
∴BF⊥EG;
∵△EIB是直角三角形,
∴OI=BE,
∵AB=6,AE=2,
∴BE=6-2=4,OB=OE=2,
∵OD-OI≤DI,
∴當(dāng)O、D、I共線時,DI有最小值,
∵IO=BE=2,
∴OD==2,
∴ID=2-2,即DI的最小值為2-2,
故答案為:2-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)是菱形的邊上一點(diǎn),點(diǎn)在的延長線上
(1)如圖,若,,求的度數(shù);
(2)如圖,若是的中點(diǎn),,求的值;
(3)如圖,若,點(diǎn)是線段的中點(diǎn),求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車間有20名工人,某天他們生產(chǎn)的零件個數(shù)統(tǒng)計如下表.
車間20名工人某一天生產(chǎn)的零件個數(shù)統(tǒng)計表
生產(chǎn)零件的個數(shù)(個) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,已知△ABC 中,∠C=90°,AC=BC=,將△ABC 繞點(diǎn) A 順時針方向旋轉(zhuǎn) 60°得到△A′B′C′的位置,連接 C′B,則 C′B 的長為 ( )
A.2-B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)的頂點(diǎn)M(1,﹣4a),且過點(diǎn)A(4,t),與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),直線l經(jīng)過點(diǎn)A,B,交y軸交于點(diǎn)D.
(1)若a=﹣1,當(dāng)2≤x<4時,求y的范圍;
(2)若△MBC是等腰直角三角形,求△ABM的面積;
(3)點(diǎn)E是直線l上方的拋物線上的動點(diǎn),△BDE的面積的最大值為;設(shè)P是拋物線的對稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形能否為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是任意兩個不等實(shí)數(shù),我們規(guī)定:滿足不等式的實(shí)數(shù)的所有取值的全體叫做閉區(qū)間,表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.如函數(shù),當(dāng)時,;當(dāng)時,,即當(dāng)時,有,所以說函數(shù)是閉區(qū)間上的“閉函數(shù)”
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求的值;
(3)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達(dá)式(可用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 中,∠C=90°,AD⊥DB,點(diǎn) E 為 AB 的中點(diǎn),DE∥BC.
(1)求證:BD 平分∠ABC;
(2)連接 EC,若∠A =,DC=3,求 EC 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C,D分別為線段AB,OB的中點(diǎn),點(diǎn)P為OA上一動點(diǎn),PC+PD值最小時點(diǎn)P的坐標(biāo)為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),已知,兩點(diǎn)的坐標(biāo)分別為,
(1)求拋物線的表達(dá)式;
(2)一動點(diǎn)從點(diǎn)出發(fā),沿線段以每秒1個單位長度的速度向點(diǎn)運(yùn)動,同時點(diǎn)從點(diǎn)出發(fā),沿線段以每秒1個單位長度的速度向點(diǎn)運(yùn)動,當(dāng)點(diǎn)運(yùn)動到點(diǎn)時,點(diǎn)隨之停止運(yùn)動.設(shè)運(yùn)動時間為秒,當(dāng)為何值時以、、為頂點(diǎn)的三角形與相似?
(3)若點(diǎn)是軸上一動點(diǎn),點(diǎn)是拋物線上一動點(diǎn),試判斷是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形.若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com