• (2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
    (1)求證:四邊形ADCE為矩形;
    (2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

    【答案】分析:(1)根據(jù)矩形的有三個(gè)角是直角的四邊形是矩形,已知CE⊥AN,AD⊥BC,所以求證∠DAE=90°,我樣可以證明四邊形ADCE為矩形.
    (2)根據(jù)正方形的判定,我們可以假設(shè)當(dāng)AD=BC,由已知可得,DC=BC,由(1)的結(jié)論可知四邊形ADCE為矩形,所以證得,四邊形ADCE為正方形.
    解答:(1)證明:在△ABC中,AB=AC,AD⊥BC,
    ∴∠BAD=∠DAC,
    ∵AN是△ABC外角∠CAM的平分線,
    ∴∠MAE=∠CAE,
    ∴∠DAE=∠DAC+∠CAE=180°=90°,
    又∵AD⊥BC,CE⊥AN,
    ∴∠ADC=∠CEA=90°,
    ∴四邊形ADCE為矩形.

    (2)當(dāng)△ABC滿足∠BAC=90°時(shí),四邊形ADCE是一個(gè)正方形.
    理由:∵AB=AC,
    ∴∠ACB=∠B=45°,
    ∵AD⊥BC,
    ∴∠CAD=∠ACD=45°,
    ∴DC=AD,
    ∵四邊形ADCE為矩形,
    ∴矩形ADCE是正方形.
    ∴當(dāng)∠BAC=90°時(shí),四邊形ADCE是一個(gè)正方形.
    點(diǎn)評:本題是以開放型試題,主要考查了對矩形的判定,正方形的判定,等腰三角形的性質(zhì),及角平分線的性質(zhì)等知識點(diǎn)的綜合運(yùn)用.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

    (2010•安順)已知:如圖,等腰三角形ABC中,AB=AC=4,若以AB為直徑的⊙O與BC相交于點(diǎn)D,DE∥AB,DE與AC相交于點(diǎn)E,則DE=   

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

    (2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
    (1)求證:四邊形ADCE為矩形;
    (2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:2007年山東省東營市中考數(shù)學(xué)試卷(解析版) 題型:解答題

    (2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
    (1)求證:四邊形ADCE為矩形;
    (2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:2007年山東省德州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

    (2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
    (1)求證:四邊形ADCE為矩形;
    (2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:2004年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:填空題

    (2010•安順)已知:如圖,等腰三角形ABC中,AB=AC=4,若以AB為直徑的⊙O與BC相交于點(diǎn)D,DE∥AB,DE與AC相交于點(diǎn)E,則DE=   

    查看答案和解析>>

    同步練習(xí)冊答案