【題目】大學(xué)畢業(yè)生小王響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,利用銀行小額無(wú)息貸款開(kāi)辦了一家飾品店.該店購(gòu)進(jìn)一種今年新上市的飾品進(jìn)行銷(xiāo)售,飾品的進(jìn)價(jià)為每件元,售價(jià)為每件元,每月可賣(mài)出件.市場(chǎng)調(diào)查反映:調(diào)整價(jià)格時(shí),售價(jià)每漲元每月要少賣(mài)件;售價(jià)每下降元每月要多賣(mài)件.為了獲得更大的利潤(rùn),現(xiàn)將飾品售價(jià)調(diào)整為(元/件)(即售價(jià)上漲,即售價(jià)下降),每月飾品銷(xiāo)量為(件),月利潤(rùn)為(元).

直接寫(xiě)出之間的函數(shù)關(guān)系式;

如何確定銷(xiāo)售價(jià)格才能使月利潤(rùn)最大?求最大月利潤(rùn);

為了使每月利潤(rùn)不少于元應(yīng)如何控制銷(xiāo)售價(jià)格?

【答案】(1)(2)當(dāng)銷(xiāo)售價(jià)格為元時(shí),利潤(rùn)最大,最大利潤(rùn)為元(3)將銷(xiāo)售價(jià)格控制在元到元之間(含元和元)才能使每月利潤(rùn)不少于

【解析】

1)直接根據(jù)題意售價(jià)每漲1元每月要少賣(mài)10件;售價(jià)每下降1元每月要多賣(mài)20件,進(jìn)而得出等量關(guān)系;

(2)利用每件利潤(rùn)×銷(xiāo)量=總利潤(rùn),進(jìn)而利用配方法求出即可;

(3)利用函數(shù)圖象結(jié)合一元二次方程的解法得出符合題意的答案.

解:由題意可得:;由題意可得:,

化簡(jiǎn)得:,

,

由題意可知應(yīng)取整數(shù),故當(dāng)時(shí),,

故當(dāng)銷(xiāo)售價(jià)格為元時(shí),利潤(rùn)最大,最大利潤(rùn)為元;由題意,如圖,令,

,

解得:,,,

故將銷(xiāo)售價(jià)格控制在元到元之間(含元和元)才能使每月利潤(rùn)不少于元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩地相距3200 m,小王、小李分別從甲、乙兩地同時(shí)出發(fā),相向而行,相遇后兩人立即返回到各自出發(fā)地并停止行進(jìn).已知小李的速度始終是60 m/min,小王在相遇后以勻速返回,但比小李晚回到原地。在整個(gè)行進(jìn)過(guò)程中,他們之間的距離ym)與行進(jìn)的時(shí)間tmin)之間的函數(shù)關(guān)系如圖中的折線(xiàn)段ABBCCD所示,請(qǐng)結(jié)合圖像信息解答下列問(wèn)題:

1)小王返回時(shí)的速度= m/mina ,b ;

2)當(dāng)t為何值時(shí),小王、小李兩人相距800 m?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一定能確定ABC≌△DEF的條件是(

A.AB=DE,BC=EF,A=DB.A=E,AB=EF,B=D

C.A=D,AB=DE,B=ED.A=D,B=E,C=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線(xiàn)CD 于點(diǎn) PH,連結(jié) AH,若 P CH 的中點(diǎn),則APH 的周長(zhǎng)為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鈍角ABC中,AB=AC,BC=2,O是邊AB上一點(diǎn),以O為圓心,OB為半徑作⊙O,交邊AB于點(diǎn)D,交邊BC于點(diǎn)E,過(guò)E作⊙O的切線(xiàn)交邊AC于點(diǎn)F.

(1)求證:EFAC.

(2)連結(jié)DF,若∠ABC=30°,且DFBC,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 (1)閱讀理解:

我們知道,只用直尺和圓規(guī)不能解決的三個(gè)經(jīng)典的希臘問(wèn)題之一是三等分任意角,但是這個(gè)任務(wù)可以借助如圖所示的一邊上有刻度的勾尺完成,勾尺的直角頂點(diǎn)為P,寬臂的寬度=PQ= QR = RS,(這個(gè)條件很重要哦!) 尺的一邊 MN 滿(mǎn)足M, N, Q三點(diǎn)共線(xiàn)(所以PQ ⊥ MN).

下面以三等分∠ABC為例說(shuō)明利用勾尺三等分銳角的過(guò)程:

第一步:畫(huà)直線(xiàn)DE使DE //BC,且這兩條平行線(xiàn)的距離等于PQ;

第二步:移動(dòng)勾尺到合適位置,使其頂點(diǎn)P落在DE上,使勾尺的MN邊經(jīng)過(guò)點(diǎn)B,同時(shí)讓點(diǎn)R落在∠ABCBA邊上;

第三步:標(biāo)記此時(shí)點(diǎn)Q和點(diǎn)P所在位置,作射線(xiàn)BQ和射線(xiàn)BP:

請(qǐng)完成第三步操作,圖中∠ABC的三等分線(xiàn)是射線(xiàn) 、 .

2)在(1)的條件下補(bǔ)全三等分∠ABC的主要證明過(guò)程:

,BQ ⊥ PR

∴BP= BR.(線(xiàn)段垂直平分線(xiàn)上的點(diǎn)與這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等)

∴∠RBQ=∠PBQ,

∵PT⊥BC,PQ⊥BQ,PT=PQ,

∴∠ = ∠ . (角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線(xiàn)上)

∴∠ = = ∠ = ∠

3)在(1)的條件下探究:

∠ABS=∠ABC是否成立?如果成立,請(qǐng)說(shuō)明理由;如果不成立,請(qǐng)?jiān)谙聢D中∠ABC外部畫(huà)出∠ABV =∠ABC(無(wú)需寫(xiě)畫(huà)法,保留畫(huà)圖痕跡即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)稱(chēng)軸為的拋物線(xiàn)軸交于兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)坐標(biāo)為設(shè)拋物線(xiàn)的頂點(diǎn)為

求拋物線(xiàn)的解析式及頂點(diǎn)坐標(biāo);

軸上的一點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo)及的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:

(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問(wèn)題:

①估計(jì)甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了元,乙種商品共用了元.已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多元,且購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同.

求甲、乙兩種商品的每件進(jìn)價(jià);

該商場(chǎng)將購(gòu)進(jìn)的甲、乙兩種商品進(jìn)行銷(xiāo)售,甲種商品的銷(xiāo)售單價(jià)為元,乙種商品的銷(xiāo)售單價(jià)為元,銷(xiāo)售過(guò)程中發(fā)現(xiàn)甲種商品銷(xiāo)量不好,商場(chǎng)決定:甲種商品銷(xiāo)售一定數(shù)量后,將剩余的甲種商品按原銷(xiāo)售單價(jià)的九折銷(xiāo)售;乙種商品銷(xiāo)售單價(jià)保持不變.要使兩種商品全部售完后共獲利不少于元,問(wèn)甲種商品按原銷(xiāo)售單價(jià)至少銷(xiāo)售多少件?

查看答案和解析>>

同步練習(xí)冊(cè)答案