【題目】已知:如圖, AB是⊙O的直徑,AM和BN是⊙O的兩條切線,點D是AM上一點,聯(lián)結(jié)OD , 作BE∥OD交⊙O于點E, 聯(lián)結(jié)DE并延長交BN于點C.
(1)求證:DC是⊙O的切線;
(2)若AD=l,BC=4,求直徑AB的長.
【答案】(1)證明見解析;(2)4.
【解析】
試題(1)連接OE,由OE=OB,利用等邊對等角得到一對角相等,再由OD與BE平行,得到一對同位角及一對內(nèi)錯角相等,等量代換得到∠AOD=∠OBE=∠OEB=∠EOD,再由OA=OE,OD=OD,利用SAS得到三角形AOD與三角形EOD全等,由全等三角形對應(yīng)角相等得到∠OAD=∠OED,根據(jù)AM為圓O的切線,利用切線的性質(zhì)得到∠OAD=∠OED=90°,即可得證.
(2)過點D作BC的垂線,垂足為H,由BN與圓O切線于點B,得到∠ABC=90°=∠BAD=∠BHD,利用三個角為直角的四邊形為矩形得到ADHB為矩形,利用矩形的對邊相等得到BH=AD=1,AB=DH,由BC-BH求出HC的長,AD、CB、CD分別切⊙O于點A、B、E,利用切線長定理得到AD=DE=1,EC=BC=4,在直角三角形DHC中,利用勾股定理求出DH的長,即為AB的長.
試題解析:(1)如圖,連接OE,
在⊙O中,OA=OE=OB,∴∠OBE=∠OEB.
∵OD∥BE,∴∠AOD=∠OBE=∠OEB=∠EOD.
在△AOD和△EOD中,OA=OE,∠AOD=∠EOD,OD=OD,
∴△AOD≌△EOD(SAS).∴∠OAD=∠OED.
∵AM是⊙O的切線,切點為A,∴BA⊥AM.
∴∠OAD=∠OED=90°.∴OE⊥DE.
∵OE是⊙O的半徑,∴DE是⊙O的切線.
(2)如圖,過點D作BC的垂線,垂足為H,
∵BN切⊙O于點B,∴∠ABC=90°=∠BAD=∠BHD.∴四邊形ABHD是矩形.
∴AD=BH=1,AB=DH,∴CH=BC-BH=4-1=3.
∵AD、CB、CD分別切⊙O于點A、B、E,∴AD=ED=1,BC=CE=4.
∴DC=DE+CE=1+4=5,
在Rt△DHC中,,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,點D是線段AB上的動點,M、N分別是AD、CD的中點,連接MN,當點D由點A向點B運動的過程中,線段MN所掃過的區(qū)域的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與理解:
折紙,常常能為證明一個命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?
把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點處,即,據(jù)以上操作,易證明≌,所以,又因為>∠B,所以∠C>∠B.
感悟與應(yīng)用:
(1)如圖(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關(guān)系,并說明理由;
(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求證:∠B+∠D=180°;
② 求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形的邊長都為1.
(1)若點A(1,3),C(2,1), ①建立適當?shù)钠矫嬷苯亲鴺讼;②點B的坐標為( , );
(2)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系xoy中,直線y=x+交x軸于點B,交y軸于點A,過點C(1,0)作x軸的垂線l,將直線l繞點C按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°).
(1)當直線l與直線y=x+平行時,求出直線l的解析式;
(2)若直線l經(jīng)過點A,①求線段AC的長;②直接寫出旋轉(zhuǎn)角α的度數(shù);
(3)若直線l在旋轉(zhuǎn)過程中與y軸交于D點,當△ABD、△ACD、△BCD均為等腰三角形時,直接寫出符合條件的旋轉(zhuǎn)角α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人用如圖所示的兩個分格均勻的轉(zhuǎn)盤做游戲:分別轉(zhuǎn)動兩個轉(zhuǎn)盤,若轉(zhuǎn)盤停止后,指針指向一個數(shù)字(若指針恰好停在分格線上,則重轉(zhuǎn)一次),用所指的兩個數(shù)字作乘積,如果積大于10,那么甲獲勝;如果積不大于10,那么乙獲勝.清你解決下列問題:
(l)利用樹狀圖(或列表)的方法表示游戲所有可能出現(xiàn)的結(jié)果;
(2)求甲、乙兩人獲勝的概率,并說明游戲是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校倡議八年級學生利用雙休日在各自社區(qū)參加義務(wù)勞動.為了了解同學們參加義務(wù)勞動的時間,學校隨機調(diào)查了部分同學參加義務(wù)勞動的時間,用得到的數(shù)據(jù)繪制成如下不完整的統(tǒng)計圖表:
勞動時間(時) | 頻數(shù)(人) | 頻率 |
0.5 | 12 | 0.12 |
1 | 30 | 0.3 |
1.5 | x | 0.4 |
2 | 18 | y |
合計 | m | 1 |
(1)統(tǒng)計表中的m=_____,x=______,y=_______;
(2)請將頻數(shù)分布直方圖補充完整;
(3)求被調(diào)查同學的平均勞動時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC為等腰直角三角形, △ABD為等邊三角形,連接CD.
(1)求∠ACD的度數(shù);
(2)如圖①,作∠BAC的平分線交CD于點E,求證:DE=AE+CE;
(3)如圖②,在(2)的條件下,M為線段BC右側(cè)一點,滿足∠CMB=60°,求證:ME平分∠CMB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系。
(1)如圖a,若AB∥CD,點P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D。將點P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論;
(2)在圖b中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖c,則∠BPD﹑∠B﹑∠D﹑∠BQD之間有何數(shù)量關(guān)系? (不需證明);
(3)根據(jù)(2)的結(jié)論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com