作业宝已知四邊形ABCD是正方形,且邊長為2,延長BC到E,使CE=數(shù)學(xué)公式-數(shù)學(xué)公式,并作正方形CEFG,(如圖),則△BDF的面積等于________.

2
分析:根據(jù)正方形的性質(zhì)可知三角形BDC為等腰直角三角形,由正方形的邊長為2,表示出三角形BDC的面積,四邊形CDFE為直角梯形,上底下底分別為小大正方形的邊長,高為小正方形的邊長,利用梯形的面積公式表示出梯形CDFE的面積,而三角形BEF為直角三角形,直角邊為小正方形的邊長及大小邊長之和,利用三角形的面積公式表示出三角形BEF的面積,發(fā)現(xiàn)四邊形CDEF的面積與三角形EFB的面積相等,所求△BDF的面積等于三角形BDC的面積加上四邊形CDFE的面積減去△EFB的面積即為三角形BDC的面積,進(jìn)而得到所求的面積.
解答:∵四邊形ABCD是正方形,邊長為2,
∴BC=DC=2,且△BCD為等腰直角三角形,
∴△BDC的面積=BC•CD=×2×2=2,
又∵正方形CEFG,及正方形ABCD,
∴EF=CE,BC=CD,
由四邊形CDFE的面積是(EF+CD)•EC,△EFB的面積是(BC+CE)•EF,
∴四邊形CDFE的面積=△EFB的面積,
∴△BDF的面積=△BDC的面積+四邊形CDFE的面積-△EFB的面積=△BDC的面積=2.
故答案為:2.
點(diǎn)評:此題考查了正方形的性質(zhì),以及三角形的面積求法,解答此類題時(shí)注意不規(guī)則圖形的面積可以轉(zhuǎn)化為一些規(guī)則圖形,或已知面積的圖形的面積的和或差來計(jì)算.根據(jù)題意得到四邊形CDFE的面積=△EFB的面積是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、已知四邊形ABCD是矩形,當(dāng)補(bǔ)充條件
AB=AD
(用字母表示)時(shí),就可以判定這個(gè)矩形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是正方形,M、N分別是邊BC、CD上的動(dòng)點(diǎn),正方形ABCD的邊長為4cm.

(1)如圖①,O是正方形ABCD對角線的交點(diǎn),若OM⊥ON,求四邊形MONC的面積;
(2)如圖②,若∠MAN=45°,求△MCN的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是正方形,M、N分別是邊BC,CD上的動(dòng)點(diǎn).
(1)如圖①,設(shè)O是正方形ABCD對角線的交點(diǎn),若OM⊥ON,求證:BM=CN,
(2)在(1)的條件下,若正方形ABCD的邊長為4cm,求四邊形MONC的面積;
(3)如圖②,若∠MAN=45°試說明△MCN的周長等于正方形ABCD周長的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是平行四邊形,則下列結(jié)論中哪一個(gè)不滿足平行四邊形的性質(zhì)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是菱形,點(diǎn)E、F分別是邊CD、AD的中點(diǎn),若AE=3cm,那么CF=
3
3
cm.

查看答案和解析>>

同步練習(xí)冊答案