如圖,已知直線y=-2x+4與x軸、y軸分別相交于A、C兩點(diǎn),拋物線y=-2x2+bx+c (a≠0)經(jīng)過點(diǎn)A、C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為P,在拋物線上存在點(diǎn)Q,使△ABQ的面積等于△APC面積的4倍.求出點(diǎn)Q的坐標(biāo);
(3)點(diǎn)M是直線y=-2x+4上的動(dòng)點(diǎn),過點(diǎn)M作ME垂直x軸于點(diǎn)E,在y軸(原點(diǎn)除外)上是否存在點(diǎn)F,使△MEF為等腰直角三角形? 若存在,求出點(diǎn)F的坐標(biāo)及對(duì)應(yīng)的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
(1)y=-2x2+2x+4;(2)Q(0,4)或(1,4)或(,-4)或(,-4);(3)存在,點(diǎn)F坐標(biāo)為(0,)時(shí),點(diǎn)M的坐標(biāo)為(,),點(diǎn)F坐標(biāo)為(0,-4)時(shí),點(diǎn)M的坐標(biāo)為(4,-4);點(diǎn)F坐標(biāo)為(0,1),點(diǎn)M的坐標(biāo)為(1,2).
【解析】
試題分析:1)根據(jù)直線y=-2x+4求出點(diǎn)A、C的坐標(biāo),再利用待定系數(shù)法求二次函數(shù)解析式解答即可;
(2)根據(jù)拋物線解析式求出點(diǎn)P的坐標(biāo),過點(diǎn)P作PD⊥y軸于D,根據(jù)點(diǎn)P、C的坐標(biāo)求出PD、CD,然后根據(jù)S△APC=S梯形APDO-S△AOC-S△PCD,列式求出△APC的面積,再根據(jù)拋物線解析式求出點(diǎn)B的坐標(biāo),從而得到AB的長(zhǎng)度,然后利用三角形的面積公式求出△ABQ的點(diǎn)Q的縱坐標(biāo)的值,然后代入拋物線求解即可得到點(diǎn)Q的坐標(biāo);
(3)根據(jù)點(diǎn)E在x軸上,根據(jù)點(diǎn)M在直線y=-2x+4上,設(shè)點(diǎn)M的坐標(biāo)為(a,-2a+4),然后分①∠EMF=90°時(shí),利用點(diǎn)M到坐標(biāo)軸的距離相等列式求解即可;②∠MFE=90°時(shí),根據(jù)等腰直角三角形的性質(zhì),點(diǎn)M的橫坐標(biāo)的長(zhǎng)度等于縱坐標(biāo)長(zhǎng)度的一半,然后列式進(jìn)行計(jì)算即可得解.
試題解析:(1)令x=0,則y=4,
令y=0,則-2x+4=0,解得x=2,
所以,點(diǎn)A(2,0),C(0,4),
∵拋物線y=-2x2+bx+c經(jīng)過點(diǎn)A、C,
∴,
解得,
∴拋物線的解析式為:y=-2x2+2x+4;
(2)∵y=-2x2+2x+4=-2(x-)2+,
∴點(diǎn)P的坐標(biāo)為(,),
如圖,過點(diǎn)P作PD⊥y軸于D,
又∵C(0,4),
∴PD=,CD= ,
∴S△APC=S梯形APDO-S△AOC-S△PCD,
=×(+2)×-×2×4-××
=
=,
令y=0,則-2x2+2x+4=0,
解得x1=-1,x2=2,
∴點(diǎn)B的坐標(biāo)為(-1,0),
∴AB=2-(-1)=3,
設(shè)△ABQ的邊AB上的高為h,
∵△ABQ的面積等于△APC面積的4倍,
∴×3h=4×,
解得h=4,
∵4<,
∴點(diǎn)Q可以在x軸的上方也可以在x軸的下方,
即點(diǎn)Q的縱坐標(biāo)為4或-4,
當(dāng)點(diǎn)Q的縱坐標(biāo)為4時(shí),-2x2+2x+4=4,
解得x1=0,x2=1,
此時(shí),點(diǎn)Q的坐標(biāo)為(0,4)或(1,4),
當(dāng)點(diǎn)Q的縱坐標(biāo)為-4時(shí),-2x2+2x+4=-4,
解得x1=,x2=,
此時(shí)點(diǎn)Q的坐標(biāo)為(,-4)或(,-4)
綜上所述,存在點(diǎn)Q(0,4)或(1,4)或(,-4)或(,-4);
(3)存在.
理由如下:如圖,
∵點(diǎn)M在直線y=-2x+4上,
∴設(shè)點(diǎn)M的坐標(biāo)為(a,-2a+4),
①∠EMF=90°時(shí),∵△MEF是等腰直角三角形,
∴|a|=|-2a+4|,
即a=-2a+4或a=-(-2a+4),
解得a=或a=4,
∴點(diǎn)F坐標(biāo)為(0,)時(shí),點(diǎn)M的坐標(biāo)為(,),
點(diǎn)F坐標(biāo)為(0,-4)時(shí),點(diǎn)M的坐標(biāo)為(4,-4);
②∠MFE=90°時(shí),∵△MEF是等腰直角三角形,
∴|a|=|-2a+4|,
即a=(-2a+4),
解得a=1,
-2a+4=2×1=2,
此時(shí),點(diǎn)F坐標(biāo)為(0,1),點(diǎn)M的坐標(biāo)為(1,2),
或a=(-2a+4),此時(shí)無解,
綜上所述,點(diǎn)F坐標(biāo)為(0,)時(shí),點(diǎn)M的坐標(biāo)為(,),
點(diǎn)F坐標(biāo)為(0,-4)時(shí),點(diǎn)M的坐標(biāo)為(4,-4);
點(diǎn)F坐標(biāo)為(0,1),點(diǎn)M的坐標(biāo)為(1,2).
考點(diǎn): 二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知直線y=-2x+4與x軸、y軸分別相交于A、C兩點(diǎn),拋物線
y=-2x+bx+c (a≠0)經(jīng)過點(diǎn)A、C.
1.求拋物線的解析式;
2.設(shè)拋物線的頂點(diǎn)為P,在拋物線上存在點(diǎn)Q,使△ABQ的面積等于△APC面積的4倍.求出點(diǎn)Q的坐標(biāo);
3.點(diǎn)M是直線y=-2x+4上的動(dòng)點(diǎn),過點(diǎn)M作ME垂直x軸于點(diǎn)E,在y軸(原點(diǎn)除外)上是否存在點(diǎn)F,使△MEF為等腰直角三角形? 若存在,求出點(diǎn)F的坐標(biāo)及對(duì)應(yīng)的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市初二下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
如圖:已知直線y=與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4
⑴求k的值;
⑵若雙曲線y=上的一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆重慶市初二下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
如圖:已知直線y= 與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4
⑴求k的值;
⑵若雙曲線y=上的一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com