【題目】如圖,在直角△ABC中,∠C=90°,AC=15,BC=20,點D為AB邊上一動點,若AD的長度為m,且m的范圍為0<m<9,在AC與BC邊上分別取兩點E、F,滿足ED⊥AB,FE⊥ED.
(1)求DE的長度;(用含m的代數(shù)式表示)
(2)求EF的長度;(用含m的代數(shù)式表示)
(3)請根據(jù)m的不同取值,探索過D、E、F三點的圓與△ABC三邊交點的個數(shù).
【答案】(1);(2) 25-; (3)見解析.
【解析】
(1)先證△ADE∽△ACB,得到=,代入即可得到DE=;
(2)由勾股定理得到AE=,利用兩個角相等的兩個三角形相似得到△ADE∽△ECF,利用相似三角形對應(yīng)邊成比例,得到=,代入即可得到EF=25-;
(3)先分別求出過D、E、F三點的⊙O與AC和BC相切時m=和m=,再分0<m<,m=,<m<,m=,<m<9,五種情況進行說明.
解:(1)∵ED⊥AB,∴∠EDA=90°,∴∠EDA=∠C=90°,
∵∠A=∠A,∴△ADE∽△ACB,
∴=,∴=,
∴DE=;
(2)在RT△ADE中,
AE==,
∵ED⊥AB,FE⊥ED
∴∠EDA=∠DEF=90°,
∴EF∥AB,
∴∠A=∠CEF,
又∵∠EDA=∠C,
∴△ADE∽△ECF,
∴=,∴m:(15-)=:EF,
∴EF=25-.
(3)當ED:EF=3:4,⊙O與AC相切于點E,
:(25-)=3:4,m=,
當ED:EF=4:3,⊙O與BC相切于點F,
:(25-)=4:3,m=,
情況一:當0<m<時,⊙O與△ABC有六個交點;
情況二:當m=時,⊙O與△ABC有五個交點;
情況三:當<m<時,⊙O與△ABC有六個交點;
情況四:當m=時,⊙O與△ABC有五個交點;
情況五:當<m<9時,⊙O與△ABC有六個交點.
故答案為:(1);(2) 25-; (3)見解析.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,則AD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標(1,n),與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①3a+b<0;②﹣1≤a≤﹣;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸交于點O、A,把拋物線在x軸及其上方的部分記為C1,將C1以y鈾為對稱軸作軸對稱得到C2,C2與x軸交于點B,若直線y=x+m與C1,C2共有3個不同的交點,則m的取值范圍是( )
A. 0<m< B. <m<
C. 0<m< D. m<或m<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)全體學(xué)生1100人參加社會實踐活動,從中隨機抽取50人的社會實踐活動成績制成如圖所示的條形統(tǒng)計圖,結(jié)合圖中所給信息解答下列問題:
(1)填寫下表:
中位數(shù) | 眾數(shù) | |
隨機抽取的50人的社會實踐活動成績(單位:分) |
(2)估計光明中學(xué)全體學(xué)生社會實踐活動成績的總分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2=的圖象交于點A(﹣1,3)、B(n,﹣1).
(1)求反比例函數(shù)的解析式;
(2)當y1>y2時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=﹣1,且過點(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有錯誤的結(jié)論有( 。﹤.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,且OA、OB分別與反比例函數(shù)y=(x>0)、y=﹣(x<0)的圖象交于A、B兩點,則tan∠OAB的值是( 。
A. B. C. 1 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com