【題目】某快遞公司針對(duì)新客戶優(yōu)惠收費(fèi),首件物品的收費(fèi)標(biāo)準(zhǔn)為:若重量不超過(guò)10千克,則免運(yùn)費(fèi);當(dāng)重量為千克時(shí),運(yùn)費(fèi)為元;第二件物品的收費(fèi)標(biāo)準(zhǔn)為:當(dāng)重量為千克時(shí),運(yùn)費(fèi)為元。
(1)若新客戶所奇首件物品的重量為13千克,則運(yùn)費(fèi)是多少元?
(2)若新客戶所寄首件物品的運(yùn)費(fèi)為32元,則物品的重量是多少千克?
(3)若新客戶所寄首件物品與第二件物品的重量之比為2:5,共付運(yùn)費(fèi)為60元,則兩件物品的重量各是多少千克?
【答案】(1)6元;(2)26千克;(3)首件物品的重量為10千克,第二件物品的重量為25千克.
【解析】
(1)根據(jù)新客戶所寄首件物品的重量為x千克(x>10)時(shí),運(yùn)費(fèi)為(2x-20)元,把x=13代入2x-20,計(jì)算即可求解;
(2)根據(jù)快遞公司針對(duì)新客戶首件物品的收費(fèi)標(biāo)準(zhǔn),可知2x-20=32,解方程即可求解;
(3)設(shè)首件物品的重量為2a千克,則第二件物品的重量為5a千克,分①0<2a≤10;②2a>10兩種情況進(jìn)行討論.
解:(1)∵13>10,
∴運(yùn)費(fèi)為:2×13-20=6(元).
答:若新客戶所寄首件物品的重量為13千克,則運(yùn)費(fèi)是6元;
(2)由題意,得2x-20=32,
解得x=26.
答:若新客戶所寄首件物品的運(yùn)費(fèi)為32元,則物品的重量是26千克;
(3)設(shè)首件物品的重量為2a千克,則第二件物品的重量為5a千克.
①當(dāng)0<2a≤10,即0<a≤5時(shí),
2×5a+10=60,解得a=5,
此時(shí)2a=10,5a=25;
②當(dāng)2a>10,即a>5時(shí),
2×2a-20+2×5a+10=60,解得a=5,
a不大于5,
∴此情況不符合題意,舍去.
綜上,首件物品的重量為10千克,第二件物品的重量為25千克.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(m,6),B(n,1)在反比例函數(shù)圖象上,AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C,DC=5.
(1)求m,n的值并寫(xiě)出反比例函數(shù)的表達(dá)式;
(2)連結(jié)AB,在線段DC上是否存在一點(diǎn)E,使△ABE的面積等于5?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元,廠方開(kāi)展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方法:①買一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶均按定價(jià)的90%付款。某商店到該服裝廠購(gòu)買西裝20件,領(lǐng)帶若干條.
(1)領(lǐng)帶買多少條時(shí),兩種優(yōu)惠方法相同?
(2)購(gòu)買50條領(lǐng)帶時(shí),應(yīng)采用哪一種方案更省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點(diǎn),過(guò)O點(diǎn)作EF∥BC交AB、AC于E、F.試回答:
(1)圖中等腰三角形是 .猜想:EF與BE、CF之間的關(guān)系是 .理由:
(2)如圖②,若AB≠AC,圖中等腰三角形是 .在第(1)問(wèn)中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過(guò)O點(diǎn)作OE∥BC交AB于E,交AC于F.這時(shí)圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),猜想線段DE、AD與BE有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出這個(gè)關(guān)系(不用證明)
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)寫(xiě)出這個(gè)等量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得△CFE,則四邊形ADCF一定是( )
A.矩形
B.菱形
C.正方形
D.梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點(diǎn)D,那么∠DAC的度數(shù)為( 。
A. 90° B. 80° C. 70° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境,某化工廠一期工程完成后購(gòu)買了3臺(tái)甲型和2臺(tái)乙型污水處理設(shè)備,共花費(fèi)資金54萬(wàn)元,且每臺(tái)乙型設(shè)備的價(jià)格是每臺(tái)甲型設(shè)備價(jià)格的75%.
(1)請(qǐng)你計(jì)算每臺(tái)甲型設(shè)備和每臺(tái)乙型設(shè)備的價(jià)格各是多少元?
(2)今年該廠二期工程即將完成,產(chǎn)生的污水將大大增加,于是該廠決定再購(gòu)買甲、乙兩種型號(hào)設(shè)備共8臺(tái)用于二期工程的污水處理,預(yù)算本次購(gòu)買資金不超過(guò)84萬(wàn)元;實(shí)際運(yùn)行中發(fā)現(xiàn),每臺(tái)甲型設(shè)備每月能處理污水200噸,每臺(tái)乙型設(shè)備每月能處理污水160噸,預(yù)計(jì)二期工程完成后每月將產(chǎn)生不少于1300噸污水,請(qǐng)你求出用于二期工程的污水處理設(shè)備的所有購(gòu)買方案.
(3)經(jīng)測(cè)算:每年用于每臺(tái)甲型設(shè)備的各種維護(hù)費(fèi)和電費(fèi)為1萬(wàn)元,每年用于每臺(tái)乙型設(shè)備的各種維護(hù)費(fèi)和電費(fèi)為1.5萬(wàn)元.在(2)中的方案中,哪種購(gòu)買方案使得設(shè)備的各種維護(hù)費(fèi)和電費(fèi)總費(fèi)用最低?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com