【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點(diǎn)與軸交于點(diǎn),⊙的半徑為為⊙上一動(dòng)點(diǎn).
(1)點(diǎn)的坐標(biāo)分別為( ),( );
(2)是否存在點(diǎn),使得為直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接,若為的中點(diǎn),連接,則的最大值= .
【答案】(1)3,0;0,-4;(2)(-1,-2)或((,),或(,--4)或(--,);(3).
【解析】
試題分析:(1)在拋物線解析式中令y=0可求得B點(diǎn)坐標(biāo),令x=0可求得C點(diǎn)坐標(biāo);
(2)①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2=2,過(guò)P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到,設(shè)OC=P2E=2x,CP2=OE=x,得到BE=3-x,CF=2x-4,于是得到FP2=,EP2=,求得P2(,-),過(guò)P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(-1,-2),②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;
(3)如圖2,當(dāng)PB與⊙C相切時(shí),OE的值最大,過(guò)E作EM⊥y軸于M,過(guò)P作PF⊥y軸于F,根據(jù)平行線等分線段定理得到ME=(OB+PF)=,OM=MF=OF=,根據(jù)勾股定理即可得到結(jié)論.
試題解析:(1)在y=x2-4中,令y=0,則x=±3,令x=0,則y=-4,
∴B(3,0),C(0,-4);
(2)存在點(diǎn)P,使得△PBC為直角三角形,
①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖(2)a,連接BC,
∵OB=3.OC=4,
∴BC=5,
∵CP2⊥BP2,CP2=,
∴BP2=2,
過(guò)P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,
∴,
設(shè)OC=P2E=2x,CP2=OE=x,
∴BE=3-x,CF=2x-4,
∴,
∴x=,2x=,
∴FP2=,EP2=,
∴P2(,),
過(guò)P1作P1G⊥x軸于G,P1H⊥y軸于H,
同理求得P1(-1,-2),
②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,過(guò)P4作P4H⊥y軸于H,則△BOC∽△CHP4,
∴,
∴CH=,P4H=,
∴P4(,--4);
同理P3(-,);
綜上所述:點(diǎn)P的坐標(biāo)為:(-1,-2)或((,),或(,--4)或(--,);
(3)如圖(3),當(dāng)PB與⊙C相切時(shí),PB與y 軸的距離最大,OE的值最大,
∵過(guò)E作EM⊥y軸于M,過(guò)P作PF⊥y軸于F,
∴OB∥EM∥PF,
∵E為PB的中點(diǎn),
∴ME=(OB+PF)=,OM=MF=OF=,
∴OE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△ABC,請(qǐng)用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫(xiě)作法,但要保留作圖痕跡):
(1)作△ABC的外心O;
(2)設(shè)D是AB邊上一點(diǎn),在圖中作出一個(gè)正六邊形DEFGHI,使點(diǎn)F,點(diǎn)H分別在邊BC和AC上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,每個(gè)小正方形邊長(zhǎng)都是1.
(1)按要求作圖:
①△ABC關(guān)于x軸對(duì)稱的圖形△ ;
②將△ 向右平移6個(gè)單位得到△ .
(2)回答下列問(wèn)題:
①△ 中頂點(diǎn)B2坐標(biāo)為 .
②若 為△ABC邊上一點(diǎn),則按照(1)中①、②作圖,點(diǎn)P對(duì)應(yīng)的點(diǎn)P2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,與相切于點(diǎn),為的弦,,與相交于點(diǎn);
(1)求證:;
(2)若,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將拋物線y=(x﹣1)2先向上平移2個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度,得到的拋物線的解析式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x 的函數(shù),自變量x的取值范圍是x >0,下表是y與x 的幾組對(duì)應(yīng)值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系 中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(2)根據(jù)畫(huà)出的函數(shù)圖象,寫(xiě)出:
①x=4對(duì)應(yīng)的函數(shù)值y約為;
②該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC的頂點(diǎn)分別為A(-4, 5),B(﹣3, 2),C(4,-1).
(1)作出△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;
(2)寫(xiě)出A1、B1、C1的坐標(biāo);
(3)若AC=10,求△ABC的AC邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=k1x+b的圖象與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)B,且與正比例函數(shù)y=kx的圖象交點(diǎn)為C(3,4).
(1)求正比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)若點(diǎn)D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,請(qǐng)求出點(diǎn)D的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)E使△BCE周長(zhǎng)最小,若存在,求出點(diǎn)E的坐標(biāo)
(4)在x軸上求一點(diǎn)P使△POC為等腰三角形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com