【題目】如圖,∠BAD=CBE=ACF,FDE=64°,DEF=43°,求△ABC各內(nèi)角的度數(shù).

【答案】ABC各內(nèi)角的度數(shù)分別為64°、43°、73°.

【解析】

根據(jù)三角形外角性質(zhì)得到∠FDE=BAD+∠ABD,而∠BAD=CBE則∠FDE=BAD+∠CBE=ABC=64°;同理可得∠DEF=ACB=43°,然后根據(jù)三角形內(nèi)角和定理計(jì)算∠BAC=180°﹣ABCACB即可

∵∠FDE=BAD+∠ABDBAD=CBE,∴∠FDE=BAD+∠CBE=ABC∴∠ABC=64°;

同理DEF=FCB+∠CBE=FCB+∠ACF=ACB,∴∠ACB=43°;

∴∠BAC=180°﹣ABCACB=180°﹣64°﹣43°=73°,∴△ABC各內(nèi)角的度數(shù)分別為64°、43°、73°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點(diǎn)A(﹣1,m)和點(diǎn)B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標(biāo)系中,畫出這兩個(gè)函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫出x2+bx+c>x+1時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E為BC邊的中點(diǎn),連接DE.
(1)求證:DE與⊙O相切.
(2)若tanC= ,DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC沿DEEF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EAEB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數(shù)為( 。

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)鈍角三角形中,如果一個(gè)角是另一個(gè)角的3倍,這樣的三角形我們稱之為智慧三角形.如,三個(gè)內(nèi)角分別為120°,40°,20°的三角形是智慧三角形”.如圖,∠MON=60°,在射線OM上找一點(diǎn)A,過(guò)點(diǎn)AABOMON于點(diǎn)B,以A為端點(diǎn)作射線AD,交射線OB于點(diǎn)C.

(1)ABO的度數(shù)為_____°,AOB_____(填不是”) “智慧三角形”;

(2)若∠OAC=20°,求證:△AOC智慧三角形”;

(3)當(dāng)△ABC智慧三角形時(shí),求∠OAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=BC,ACB=90°,點(diǎn)D、E在AB上,將ACDBCE分別沿CD、CE翻折,點(diǎn)A、B分別落在點(diǎn)A′、B′的位置,再將A′CD、B′CE分別沿A′C、B′C翻折,點(diǎn)D與點(diǎn)E恰好重合于點(diǎn)O,則A′OB′的度數(shù)是( )

A.90° B.120° C.135° D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)數(shù)學(xué)活動(dòng)小組為了調(diào)查居民的用水情況,從某社區(qū)的1500戶家庭中隨機(jī)抽取了30戶家庭的月用水量,結(jié)果如下表所示:

月用水量(噸)

3

4

5

7

8

9

10

戶 數(shù)

4

3

5

11

4

2

1

(1)求這30戶家庭月用水量的平均數(shù),眾數(shù)和中位數(shù);

(2)根據(jù)上述數(shù)據(jù),試估計(jì)該社區(qū)的月用水量;

(3)由于我國(guó)水資源缺乏,許多城市常利用分段計(jì)費(fèi)的辦法引導(dǎo)人們節(jié)約用水,即規(guī)定每個(gè)家庭的月基本用水量為m(噸),家庭月用水量不超過(guò)m(噸)的部分按原價(jià)收費(fèi),超過(guò)m噸部分加倍收費(fèi),你認(rèn)為上述問(wèn)題中的平均數(shù)、眾數(shù)、中位數(shù)中哪一個(gè)量作為月基本用水量比較合理?簡(jiǎn)述理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.

(1)已知甲隊(duì)在初賽階段的積分為分,甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);

(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案