精英家教網 > 初中數學 > 題目詳情

【題目】如圖.Rt△ABC內接于⊙O,BC為直徑,AB=4,AC=3,D是 的中點,CD與AB的交點為E,則 等于(
A.4
B.3.5
C.3
D.2.8

【答案】C
【解析】解:連接DO,交AB于點F, ∵D是 的中點,
∴DO⊥AB,AF=BF,
∵AB=4,
∴AF=BF=2,
∴FO是△ABC的中位線,AC∥DO,
∵BC為直徑,AB=4,AC=3,
∴BC=5,FO= AC=1.5,
∴DO=2.5,
∴DF=2.5﹣1.5=1,
∵AC∥DO,
∴△DEF∽△CEA,
=
= =3.
故選:C.

利用垂徑定理的推論得出DO⊥AB,AF=BF,進而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質求出即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有人;
(2)請你將條形統(tǒng)計圖補充完成;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優(yōu)秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=kx+b的圖象與反比例函數y= 的圖象相交于點A(1,5)和點B,與y軸相交于點C(0,6).
(1)求一次函數和反比例函數的解析式;
(2)現有一直線l與直線y=kx+b平行,且與反比例函數y= 的圖象在第一象限有且只有一個交點,求直線l的函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上.頂點B的坐標為(3, ),點C的坐標為( ,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為(
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設線段DP的長為x,線段PF的長為y. ①求y與x的函數關系式;
②當x=6時,求線段FG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三點.
(1)點A關于原點O的對稱點A′的坐標為 , 點B關于x軸的對稱點B′的坐標為 , 點C關于y軸的對稱點C的坐標為
(2)求(1)中的△A′B′C′的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=kx+b(b>0)與拋物線 相交于點A(x1 , y1),B(x2 , y2)兩點,與x軸正半軸相交于點D,與y軸相交于點C,設△OCD的面積為S,且kS+32=0.

(1)求b的值;
(2)求證:點(y1 , y2)在反比例函數 的圖象上;
(3)求證:x1OB+y2OA=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小林準備進行如下操作實驗;把一根長為40cm的鐵絲剪成兩段,并把每一段各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58cm2 , 小林該怎么剪?
(2)小峰對小林說:“這兩個正方形的面積之和不可能等于48cm2 . ”他的說法對嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為緩解交通擁堵,減少環(huán)境污染,倡導低碳出行,構建慢行交通體系,南潯中心城區(qū)正在努力建設和完善公共自行車服務系統(tǒng).圖1所示的是一輛自行車的實物圖.圖2是自行車的車架示意圖.CE=30cm,DE=24cm,AD=26cm,DE⊥AC于點E,座桿CF的長為20cm,點A、E、C、F在同一直線上,且∠CAB=75°.

(1)求車架中AE的長;
(2)求車座點F到車架AB的距離.(結果精確到1cm,參考數據:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

同步練習冊答案