【題目】(1)化簡;
(2)如圖,已知△ABC,按如下步驟作圖:
①分別以A,C為圓心,大于AC的長為半徑畫弧,兩弧交于P, Q兩點;
②作直線PQ,分別交AB,AC于點E,D;
③過C作CF∥AB交PQ于點F.
求證:△AED≌△CFD;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點B的坐標為(6,4).
(1)請用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點A和點C,且使∠ABC=90°,△ABC與△AOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)
(2)問:(1)中這樣的直線AC是否唯一?若唯一,請說明理由;若不唯一,請在圖中畫出所有這樣的直線AC,并寫出與之對應的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船在A處測得燈塔P位于其東北方向上,輪船沿正東方向航行30海里到達B處后,此時測得燈塔P位于其北偏東30°方向上,此時輪船與燈塔P的距離是( 。┖@铮
A. 15+15 B. 30+30 C. 45+15 D. 60
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖為水平放置于桌面上的臺燈的示意圖,已知燈臂AB=18cm,燈罩BC=30cm,∠BAM=60°,∠ABC=90°,求點C到桌面的距離CD(精確到0.1cm).參考數(shù)據:≈1.41,≈1.73.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課桌生產廠家研究發(fā)現(xiàn),傾斜12°~24°的桌面有利于學生保持軀體自然姿勢.根據這一研究,廠家決定將水平桌面做成可調節(jié)角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉,在點C處安裝一根可旋轉的支撐臂CD,AC=30 cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,當∠BAC=12°時,求AD的長.(結果保留根號)
(參考數(shù)據:sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一臺放置在水平桌面上的筆記本電腦,將其側面抽象成如右圖所示的幾何圖形,若顯示屏所在面的側邊AO與鍵盤所在面的側邊BO長均為24cm,點P為眼睛所在位置,D為AO的中點,連接PD,當PD?AO時,稱點P為“最佳視角點”,作PC?BC,垂足C在OB的延長線上,且BC=12cm.
(1)當PA=45cm時,求PC的長;
(2)若?AOC=120°時,“最佳視角點”P在直線PC上的位置會發(fā)生什么變化?此時PC的長是多少?請通過計算說明.(結果精確到0.1cm,可用科學計算器,參考數(shù)據: , )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標為A(-2,3),B(-3,2),C(-1,1).
(1)若將△ABC向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的△A1B1C1;
(2)畫出△A1B1C1繞原點旋轉180°后得到的△A2B2C2;
(3)△A'B'C'與△ABC是位似圖形,請寫出位似中心的坐標:______;
(4)順次連接C,C1,C',C2,所得到的圖形是軸對稱圖形嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=(x﹣1)2﹣4與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,經過點C作x軸的平行線,與拋物線的另一個交點為點D,M為拋物線的頂點,P(m,n)是拋物線上點A,C之間的一點(不與點A,C重合),以下結論:①OC=4;②點D的坐標為(2,﹣3);③n+3>0;④存在點P,使PM⊥DM.其中正確的是( )
A. ①③ B. ②③ C. ②④ D. ①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是△ABC內一點,⊙O與BC相交于F、G兩點,且與AB、AC分別相切于點D、E,DE∥BC.連接 DF、EG.
(1)求證:AB=AC.
(2)已知 AB=5,BC=6.求四邊形DFGE是矩形時⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com