【題目】如圖1所示,將一個(gè)邊長為2的正方形ABCD和一個(gè)長為2、寬為1的長方形CEFD拼在一起,構(gòu)成一個(gè)大的長方形ABEF.現(xiàn)將小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至,旋轉(zhuǎn)角為.
(1)當(dāng)點(diǎn)恰好落在EF邊上時(shí),求旋轉(zhuǎn)角的值;
(2)如圖2,G為BC的中點(diǎn),且00<<900,求證:;
(3)小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,與能否全等?若能,直接寫出旋轉(zhuǎn)角的值;若不能,說明理由.
【答案】(1)∠α=300(2)見解析(3)旋轉(zhuǎn)角a的值為1350或3150時(shí),△BCD′與∠DCD′全等
【解析】
試題(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得CE=CH=1,即可得出結(jié)論;
(2)由G為BC中點(diǎn)可得CG=CE,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′CE′=∠DCE=90°,CE=CE′CE,則∠GCD′=∠DCE′=90°+α,然后根據(jù)“SAS”可判斷△GCD′≌△E′CD,則GD′=E′D;
(3)根據(jù)正方形的性質(zhì)得CB=CD,而CD=CD′,則△BCD′與△DCD′為腰相等的兩等腰三角形,當(dāng)兩頂角相等時(shí)它們?nèi),?dāng)△BCD′與△DCD′為鈍角三角形時(shí),可計(jì)算出α=135°,當(dāng)△BCD′與△DCD′為銳角三角形時(shí),可計(jì)算得到α=315°.
試題解析:(1)
∵長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,∴CE=CH=1,∴△CEH為等腰直角三角形,∴∠ECH=45°,∴∠α=30°;
(2)證明:∵G為BC中點(diǎn),∴CG=1,∴CG=CE,∵長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∵CD′=CD,∠GCD=∠DCE′,CG=CE′,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;
(3)解:能.
理由如下:
∵四邊形ABCD為正方形,∴CB=CD,∵CD′=CD′,∴△BCD′與△DCD′為腰相等的兩等腰三角形,當(dāng)∠BCD′=∠DCD′時(shí),△BCD′≌△DCD′,當(dāng)△BCD′與△DCD′為鈍角三角形時(shí),則旋轉(zhuǎn)角α=(360°-90°)÷2=135°,當(dāng)△BCD′與△DCD′為銳角三角形時(shí),∠BCD′=∠DCD′=∠BCD=45°,則α=360°﹣90°÷2=315°,即旋轉(zhuǎn)角a的值為135°或315°時(shí),△BCD′與△DCD′全等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,點(diǎn)在邊上( “點(diǎn)D不與重合),點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),連接,以為邊作作等邊三角形,連接.
(1)如圖1,當(dāng)的延長線與的延長線相交,且在直線的同側(cè)時(shí),過點(diǎn)作,交于點(diǎn),求證:;
(2)如圖2,當(dāng)反向延長線與的反向延長線相交,且在直線的同側(cè)時(shí),求證:;
(3)如圖3, 當(dāng)反向延長線與線段相交,且在直線的異側(cè)時(shí),猜想、、之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3.
(1)該二次函數(shù)圖象的對稱軸為 ;
(2)判斷該函數(shù)與x軸交點(diǎn)的個(gè)數(shù),并說明理由;
(3)下列說法正確的是 (填寫所有正確說法的序號(hào))
①頂點(diǎn)坐標(biāo)為(1,﹣4);
②當(dāng)y>0時(shí),﹣1<x<3;
③在同一平面直角坐標(biāo)系內(nèi),該函數(shù)圖象與函數(shù)y=﹣x2+2x+3的圖象關(guān)于x軸對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,于,平分,且于,與相交于點(diǎn),是邊的中點(diǎn),連接與相交于點(diǎn),下列結(jié)論正確的有( )個(gè)
①;②;③;④是等腰三角形;⑤.
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AEC和△DFB中,∠E=∠F,點(diǎn)A,B,C,D在同一直線上,有如下三個(gè)關(guān)系式:①AE∥DF,②AB=CD,③CE=BF.
(1)請用其中兩個(gè)關(guān)系式作為條件,另一個(gè)作為結(jié)論,寫出你認(rèn)為正確的所有命題(用序號(hào)寫出命題書寫形式:“如果,,那么”);
(2)選擇(1)中你寫出的一個(gè)命題,說明它正確的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn)點(diǎn);點(diǎn)在直線的右側(cè),且.
(1)若為直角三角形,求點(diǎn)的坐標(biāo);
(2)如圖2,若點(diǎn)在第四象限,且,與軸交于點(diǎn),與軸交于點(diǎn),連接,求證:是兩個(gè)外角平分線的交點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京張高鐵是2022年北京冬奧會(huì)的重要交通保障設(shè)施.如圖,京張高鐵起自北京北站,途經(jīng)清河、沙河、昌平等站,終點(diǎn)站為張家口南站,全長174千米.根據(jù)資料顯示,京張高鐵在某次測試中的平均時(shí)速是現(xiàn)運(yùn)行的京張鐵路某字頭列車平均時(shí)速的6倍,全程行駛時(shí)間減少了122分鐘,且每站(不計(jì)起始站和終點(diǎn)站)?康钠骄鶗r(shí)間也減少了3.5分鐘.請求出此次測試中京張高鐵的平均時(shí)速是多少.
(注:平均時(shí)速的測算公式為)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖l、圖2均為8×6的方格紙(每個(gè)小正方形的邊長均為1),在方格紙中各有一條線段AB,其中點(diǎn)A、B均在小正方形的頂點(diǎn)上,請按要求畫圖:
(1)在圖l中畫一直角△ABC,使得tan∠BAC=,點(diǎn)C在小正方形的頂點(diǎn)上;
(2)在圖2中畫一個(gè)□ABEF,使得□ABEF的面積為圖1中△ABC面積的4倍,點(diǎn)E、F在小正方形的頂點(diǎn)上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com