如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則下列結(jié)論錯(cuò)誤的是( ).
A.AF=AE B.△ABE≌△AGF
C.EF=2 D.AF=EF
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
小王參加某企業(yè)招聘測試,他的筆試,面試、技能操作得分分別為85分,80分,90分,若依次按照2:3:5的比例確定成績,則小王的成績是( )
A. 255分 B. 84分 C. 84.5分 D.86分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,邊長為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過點(diǎn)A,點(diǎn)P是拋物線上點(diǎn)A、C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過點(diǎn)P作PF⊥BC于點(diǎn)F. 點(diǎn)D、E的坐標(biāo)分別為(0,6),(-4,0),連接PD,PE,DE.
(1)請(qǐng)直接寫出拋物線的解析式;
(2)小明探究點(diǎn)P的位置發(fā)現(xiàn):當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)C重合時(shí),PD與PF的差為定值. 進(jìn)而猜想:對(duì)于任意一點(diǎn)P,PD與PF的差為定值. 請(qǐng)你判斷該猜想是否正確,并說明理由;
(3)小明進(jìn)一步探究得出結(jié)論:若將“使△PDE的面積為整數(shù)”的點(diǎn)P記作“好點(diǎn)”,則存在多個(gè)“好點(diǎn)”,且使△PDE的周長最小的點(diǎn)P也是一個(gè)“好點(diǎn)”.
請(qǐng)直接寫出所有“好點(diǎn)”的個(gè)數(shù),并求出△PDE的周長最小時(shí)“好點(diǎn)”的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠B=30°,BC的垂直平分線交AB于點(diǎn)E,垂足為D,CE平分∠ACB,若BE=2,則AE的長為(
).
A. B.1 C. D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元. 根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價(jià),有關(guān)管理部門限定:這種粽子的每盒售價(jià)不得高于58元. 如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
正比例函數(shù)y1=k1x的圖像與反比例函數(shù)y2=的圖象相交于點(diǎn)A(-1,2)和點(diǎn)B .
當(dāng)y1<y2時(shí),自變量x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠A=90°,AB=AC=12 cm,半徑為4 cm的⊙O與AB、AC兩邊都相切,與BC交于點(diǎn)D、E.點(diǎn)P從點(diǎn)A出發(fā),沿著邊AB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā),沿著邊BC向終點(diǎn)C運(yùn)動(dòng),點(diǎn)R從點(diǎn)C出發(fā),沿著邊CA向終點(diǎn)A運(yùn)動(dòng).已知點(diǎn)P、Q、R同時(shí)出發(fā),運(yùn)動(dòng)速度分別是1 cm/s、x cm/s、1.5 cm/s,運(yùn)動(dòng)時(shí)間為t s.
(1)求證:BD=CE;
(2)若x=3,當(dāng)△PBQ∽△QCR時(shí),求t的值;
(3)設(shè)△PBQ關(guān)于直線PQ對(duì)稱的圖形是△PB'Q,求當(dāng)t和x分別為何值時(shí),點(diǎn)B'與圓心O恰好重合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com