【題目】已知:關于x的方程
(1)求證:不論m取何值時,方程總有兩個不相等的實數根
(2)若方程的一個根為1,求m的值及方程的另一根
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程。
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個實數根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉α度到△A1B1C1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E. F.
(1)求證:△BCF≌△BA1D.
(2)當∠C=α度時,判定四邊形A1BCE的形狀并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+n與x軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a≠0)過C、B兩點,交x軸于另一點A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點P是射線CB上一點,過點P作x軸的垂線,垂足為H,交拋物線于Q,設P點橫坐標為t,線段PQ的長為d,求出d與t之間的函數關系式,并寫出相應的自變量t的取值范圍;
(3)在(2)的條件下,當點P在線段BC上時,設PH=e,已知d,e是以y為未知數的一元二次方程:y2-(m+3)y+(5m2-2m+13)=0 (m為常數)的兩個實數根,點M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】參與兩個數學活動,再回答問題:
活動:觀察下列兩個兩位數的積兩個乘數的十位上的數都是9,個位上的數的和等于,猜想其中哪個積最大?
,,,,,,,,.
活動:觀察下列兩個三位數的積兩個乘數的百位上的數都是9,十位上的數與個位上的數組成的數的和等于,猜想其中哪個積最大?
,,,,,,.
分別寫出在活動、中你所猜想的是哪個算式的積最大?
對于活動,請用二次函數的知識證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示A、B、C、D四點在⊙O上的位置,其中=180°,且=,=.若阿超在上取一點P,在上取一點Q,使得∠APQ=130°,則下列敘述何者正確( )
A. Q點在上,且>B. Q點在上,且<
C. Q點在上,且>D. Q點在上,且<
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com