精英家教網 > 初中數學 > 題目詳情

【題目】初三年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高m,與籃圈中心的水平距離為7m,當球出手后水平距離為4m時到達最大高度4m,設籃球運行的軌跡為拋物線,籃圈距地面3m

1)建立如圖所示的平面直角坐標系,求拋物線的解析式并判斷此球能否準確投中?

2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

【答案】1y=(x4)2+4;能夠投中;(2)能夠蓋帽攔截成功.

【解析】

1)根據題意可知:拋物線經過(0),頂點坐標是(44),然后設出拋物線的頂點式,將(0,)代入,即可求出拋物線的解析式,然后判斷籃圈的坐標是否滿足解析式即可;

2)當時,求出此時的函數值,再與3.1m比較大小即可判斷.

解:由題意可知,拋物線經過(0,),頂點坐標是(4,4).

設拋物線的解析式是,

將(0)代入,得

解得,

所以拋物線的解析式是;

籃圈的坐標是(7,3),代入解析式得,

∴這個點在拋物線上,

∴能夠投中

答:能夠投中.

2)當時,<3.1,

所以能夠蓋帽攔截成功.

答:能夠蓋帽攔截成功.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了解某區(qū)八年級學生的睡眠情況,隨機抽取了該區(qū)八年級學生部分學生進行調查.已知D組的學生有15人,利用抽樣所得的數據繪制所示的統(tǒng)計圖表.

一、學生睡眠情況分組表(單位:小時)

組別

睡眠時間

二、學生睡眠情況統(tǒng)計圖

根據圖表提供的信息,回答下列問題:

1)試求八年級學生睡眠情況統(tǒng)計圖中的a的值及a對應的扇形的圓心角度數;

2)如果睡眠時間x(時)滿足:,稱睡眠時間合格.已知該區(qū)八年級學生有3250人,試估計該區(qū)八年級學生睡眠時間合格的共有多少人?

3)如果將各組別學生睡眠情況分組的最小值(如C組別中,取),B、CD三組學生的平均睡眠時間作為八年級學生的睡眠時間的依據.試求該區(qū)八年級學生的平均睡眠時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于任意一個四位數.如果把它的前兩位數字和后兩位數字調換,則稱得到的數為的調換數,把與其調換數之差記為,例如的調換數為,

1)求證:對于任意一個四位數,都能被整除.

2)我們把的商記為,例如,若有兩數、,其中, ,、都是正整數),那么當時,求的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AC為O的直徑,B為O上一點,ACB=30°,延長CB至點D,使得CB=BD,過點D作DEAC,垂足E在CA的延長線上,連接BE.

(1)求證:BE是O的切線;

(2)當BE=3時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標是-2.

(1)求這條直線的解析式及點B的坐標;

(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小莉的爸爸買了一張?zhí)畦魃介T票,她和哥哥兩人都很想去觀看,可門票只有一張,讀九年級的哥哥想了一個辦法,拿了八張撲克牌,將數字為1,2,34的四張牌給小莉,將數字為56,78的四張牌留給自己,并按如下游戲規(guī)則進行:小莉和哥哥從各自的四張牌中隨機抽出一張,然后將抽出的兩張撲克牌數字相加,如果和為偶數,則小莉去;如果和為奇數,則哥哥去.哥哥設計的游戲規(guī)則公平嗎?若公平,請說明理由;若不公平,請你設計一種公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個小風箏與一個大風等形狀完全相同,它們的形狀如圖所示,其中對角線ACBD.已知它們的對應邊之比為13,小風箏兩條對角線的長分別為12cm14cm

1)小風箏的面積是多少?

2)如果在大風箏內裝設一個連接對角頂點的十字交叉形的支撐架,那么至少需用多長的材料?(不記損耗)

3)大風箏要用彩色紙覆蓋,而彩色紙是從一張剛好覆蓋整個風箏的矩形彩色紙(如圖中虛線所示)裁剪下來的,那么從四個角裁剪下來廢棄不用的彩色紙的面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,CFAB于點F,過點DDEBC的延長線于點E,且CFDE

1)求證:△BFC≌△CED

2)若∠B60°,AF5,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40.為擴大銷售,增加盈利,商場決定采取適當的降價措施,經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出2.

1)每件襯衫降價多少元時,商場平均每天的盈利是1050元?

2)每件襯衫降價多少元時,商場平均每天盈利最大?最大盈利是多少?

查看答案和解析>>

同步練習冊答案