半徑為6cm的圓,120°的圓心角所對的弧長是       cm .(結(jié)果保留π)

試題分析:
點評:本題主要考查了弧長公式
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知OA、OB是⊙O的兩條半徑,且OA⊥BC,C為OB延長線上任意一點,過點C作CD切⊙O于點D,連接AD,交OC過于點E。

(1)求證:CD=CE;
(2)若將圖1中的半徑OB所在的直線向上平行移動,交⊙O于,其他條件不變,如圖2,那么上述結(jié)論CD=CE還成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=2,ED=4,

(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

扇形的弧長為20πcm,面積為240πcm2,則扇形的半徑為         cm。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點A在半徑為3的⊙O內(nèi),OA=,P為⊙O上一點,當∠OPA取最大值時,PA的長等于(      )

A.        B.      C.    B.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,AB是⊙O的直徑,⊙O交BC的中點于D,DE⊥AC于E,連接AD,則下列結(jié)論:
①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切線,
正確的有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的半徑為2,點A的坐標為(2, ),直線AB為⊙O的切線,B為切點。則B點的坐標為
A.(B.(
C.(D.(

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

1471年,德國數(shù)學家米勒提出了雕塑問題:假定有一個雕塑高AB=3米,立在一個底座上,底座的高BC=2.2米,一個人注視著這個雕塑并朝它走去,這個人的水平視線離地1.7米,問此人應站在離雕塑底座多遠處,才能使看雕塑的效果最好,所謂看雕塑的效果最好是指看雕塑的視角最大,問題轉(zhuǎn)化為在水平視線EF上求使視角最大的點,如圖:過A、B兩點,作一圓與EF相切于點M,你能說明點M為所求的點嗎?并求出此時這個人離雕塑底座的距離?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,以O(shè)為圓心,半徑為2的圓與反比例函數(shù)y=(x>0)的圖象交于A、B兩點,則的長度為       (    )   

A.π         B.π         C.π        D. π

查看答案和解析>>

同步練習冊答案