【題目】如圖,一次函數(shù)y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點(diǎn)A,B,AB=2,∠OAB=45°

1)求一次函數(shù)的解析式;

2)如果在第二象限內(nèi)有一點(diǎn)C(a);試用含有a的代數(shù)式表示四邊形ABCO的面積,并求出當(dāng)ABC的面積與ABO的面積相等時(shí)a的值;

3)在x軸上,是否存在點(diǎn)P,使PAB為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1)一次函數(shù)解析式為y= -x+2 2a 3)存在,滿足條件的點(diǎn)P的坐標(biāo)為(0,0)或(22,0)或(2+20)或(-2,0).

【解析】

1)根據(jù)勾股定理求出A、B兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問題;
2)根據(jù)S四邊形ABCD=SAOB+SBOC計(jì)算即可,列出方程即可求出a的值;
3)分三種情形討論即可解決問題;

1)在RtABO中,∠OAB=45°,
∴∠OBA=OAB-OAB=90°-45°=45°
∴∠OBA=OAB
OA=OB
OB2+OA2=AB2即:2OB2=22
OB=OA=2
∴點(diǎn)A2,0),B0,2).

解得:


∴一次函數(shù)解析式為y= -x+2
2)如圖,
SAOB=×2×2=2,SBOC=×2×|a|= -a,
S四邊形ABCD=SAOB+SBOC=2-a
SABC=S四邊形ABCO-SAOC=2-a-×2×=-a,
當(dāng)ABC的面積與ABO面積相等時(shí),a2,解得a

3)在x軸上,存在點(diǎn)P,使PAB為等腰三角形
①當(dāng)PA=PB時(shí),P0,0),
②當(dāng)BP=BA時(shí),P-2,0),
③當(dāng)AB=AP時(shí),P2-2,0)或(2+2,0),
綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為(0)或(22,0)或(2+20)或(-2,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1所示的三棱柱,高為,底面是一個(gè)邊長(zhǎng)為的等邊三角形.

(1)這個(gè)三棱柱有 條棱, 個(gè)面;

(2)2方框中的圖形是該三棱柱的表面展開圖的一部分,請(qǐng)將它補(bǔ)全;

(3)要將該三棱柱的表面沿某些棱剪開,展開成一個(gè)平面圖形,需剪開 條棱,需剪開棱的棱長(zhǎng)的和的最大值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)E與正方形ABCD的頂點(diǎn)A重合.三角板的一邊交CD于點(diǎn)F,另一邊交CB的延長(zhǎng)線于點(diǎn)G.

(1)求證:EF=EG;

(2)如圖2,移動(dòng)三角板,使頂點(diǎn)E始終在正方形ABCD的對(duì)角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;

(3)如圖3,將(2)中的“正方形ABCD”改為“矩形ABCD”,且使三角板的一邊經(jīng)過點(diǎn)B,其他條件不變,若AB=a,BC=b,請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天小明騎自行車上學(xué),途中因自行車發(fā)生故障,修車耽誤了一段時(shí)間后繼續(xù)騎行,按時(shí)趕到了學(xué)校,如圖所示是小明從家到學(xué)校這一過程中所走的路程 s(米)與時(shí)間 t(分)之間的關(guān)系.

1)小明從家到學(xué)校的路程共 米,從家出發(fā)到學(xué)校,小明共用了 分鐘;

2)小明修車用了多長(zhǎng)時(shí)間?

3)小明修車以前和修車后的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某造紙廠為了保護(hù)環(huán)境,準(zhǔn)備購買AB兩種型號(hào)的污水處理設(shè)備共6臺(tái),用于同時(shí)治理不同成分的污水,若購買A2臺(tái),B3臺(tái)需54萬元,購買A4臺(tái)、B2臺(tái)需68萬元.

1)求出A型、B型污水處理設(shè)備的單價(jià);

2)經(jīng)核實(shí),一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,一臺(tái)B型設(shè)備一個(gè)月可處理污水180噸,如果該企業(yè)每月的污水處理量不低于1150噸,問共有幾種購買方案?請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢的購買方案并求此時(shí)的購買費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點(diǎn)會(huì)合.已知小亮行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長(zhǎng)的2倍,小穎在小亮出發(fā)后50分才乘上纜車,纜車的平均速度為180米/分,設(shè)小亮出發(fā)x分后行走的路程為y米.圖中的折線表示小亮在整個(gè)行走過程中yx的變化關(guān)系.

1)小亮行走的總路程是_________米,他途中休息了___________分;

2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;

3)當(dāng)小穎到達(dá)纜車終點(diǎn)時(shí),小亮離纜車終點(diǎn)的路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為了配合足球進(jìn)校園的活動(dòng),實(shí)驗(yàn)學(xué)校在體育用品專賣店購買甲、乙兩種不同的足球,購買甲種足球共花費(fèi)2000元,購買乙種足球共花費(fèi)1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍,且購買一個(gè)乙種足球比購買一個(gè)甲種足球多花20元。求購買一個(gè)甲種足球,一個(gè)乙種足球各需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c的三邊,且滿足,試判斷的形狀.

閱讀下面解題過程:

解:由得:

Rt△.④

試問:以上解題過程是否正確:_________

若不正確,請(qǐng)指出錯(cuò)在哪步?______(填代號(hào))

錯(cuò)誤原因是______________________

本題的結(jié)論應(yīng)為_______________________

查看答案和解析>>

同步練習(xí)冊(cè)答案