【題目】如圖,在△ABC中,AB=AC,以邊AB為直徑的⊙O交邊BC于點D,交邊AC于點E.過D點作DF⊥AC于點F.
(1)求證:DF是⊙O的切線;
(2)求證:CF=EF;
(3)延長FD交邊AB的延長線于點G,若EF=3,BG=9時,求⊙O的半徑.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)證明OD∥AC,可得OD⊥DF,可得結(jié)論;
(2)證出∠CED=∠C,則CD=DE,可得出結(jié)論;
(3)證出△ODG∽△AFG,得出比例式,即可求出圓的半徑.
(1)證明:如圖1,連接OD,
∵AB=AC,
∴∠ABC=∠C,
∵OB=OD,
∴∠ABC=∠ODB,
∴∠C=∠ODB,
∴OD∥AC,
∵DF⊥AC,
∴DF⊥OD,
∴DF是⊙O的切線;(亦有其他證法)
(2)證明:如圖2,連接DE,
∵四邊形AEDB為圓內(nèi)接四邊形,
∴∠CED=∠ABC,
∵∠ABC=∠C,
∴∠CED=∠C,
∴CD=DE,
∵DF⊥CE,
∴CF=EF;
(3)如圖3,連接AD,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∵AB=AC,
∴CD=BD,
∵OD∥AC,
∴△GOD∽△GAF,
∴,
∴設⊙O的半徑是r,則AB=AC=2r,
∴AF=2r﹣3,OG=9+r,AG=9+2r,
∴,
∴r=,即⊙O的半徑是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個18米高的樓頂上有一信號塔DC,李明同學為了測量信號塔的高度,在地面的A處測的信號塔下端D的仰角為30°,然后他正對塔的方向前進了18米到達地面的B處,又測得信號塔頂端C的仰角為60°,CD⊥AB與點E,E、B、A在一條直線上.請你幫李明同學計算出信號塔CD的高度(結(jié)果保留整數(shù),≈1.7,≈1.4 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學準備隨機選出七、八、九三個年級各1名學生擔任學校國旗升旗手.現(xiàn)已知這三個年級每個年級分別選送一男、一女共6名學生作為備選人.
(1)請你利用樹狀圖或表格列出所有可能的選法;
(2)求選出“一男兩女”三名國旗升旗手的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學對本校初2017屆500名學生中中考參加體育加試測試情況進行調(diào)查,根據(jù)男生1000米及女生800米測試成績整理,繪制成不完整的統(tǒng)計圖,(圖①,圖②),請根據(jù)統(tǒng)計圖提供的信息,回答下列問題:
(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計圖中a= ;
(2)補全條形統(tǒng)計圖;
(3)若500名學生中隨機抽取一名學生,這名學生該項成績在8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】保護環(huán)境衛(wèi)生,垃圾分類開始實施.我市為了促進生活垃圾的分類處理,將生活垃圾分為“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”四類,并且設置了相應的垃圾箱.
(1)小亮將媽媽分類好的某類垃圾隨機投入到四種垃圾箱某類箱內(nèi),請寫出小亮投放正確的概率為 ;
(2)經(jīng)過媽媽的教育,小明已經(jīng)分清了“有害垃圾”,但仍然分不清“可回收物”、“濕垃圾”和“干垃圾”,這天小亮要將媽媽分類好的四類垃圾投入到四種垃圾箱內(nèi),請求出小明投放正確的概率;
(3)請你就小亮投放垃圾的事件提出兩條合理化建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店試銷一款進價為60元/件的新童裝,并與供貨商約定,試銷期間售價不低于進價,也不得高于進價的40%,同一周內(nèi)售價不變.從試銷記錄看到,單價定為65元這周,銷售了275件;單價定為75元這周,銷售了225件.每周銷量(件)與銷售單價(元)符合一次函數(shù)關(guān)系.
(1)求每周銷量(件)與銷售單價(元)之間的關(guān)系式.
(2)商店將童裝售價定為多少時,這周內(nèi)銷售童裝獲得毛利最大,最大毛利是多少元?
(3)若商店規(guī)劃一周內(nèi)這項銷售獲得毛利不低于2500元,試確定售價的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過點A作∠DAF=∠DAB,過點D作AF的垂線,垂足為F,交AB的延長線于點P,連接CO并延長交⊙O于點G,連接EG,已知DE=4,AE=8.
(1)求證:DF是⊙O的切線;
(2)求證:OC2=OEOP;
(3)求線段EG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點C,連接OF,若∠AOF=40°,則∠F的度數(shù)是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF,當AE為_____時,△AEF的面積最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com