【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)B,Cx軸上,A,D兩點(diǎn)分別在反比例函數(shù)y=﹣x0)與yx0)的圖象上,若ABCD的面積為4,則k的值為:_____

【答案】1

【解析】

連接OA、OD,如圖,利用平行四邊形的性質(zhì)得AD垂直y軸,則利用反比例函數(shù)的比例系數(shù)k的幾何意義得到SOAESODE,所以SOAD+,,然后根據(jù)平行四邊形的面積公式可得到ABCD的面積=2SOAD4,即可求出k的值.

連接OA、OD,如圖,

∵四邊形ABCD為平行四邊形,

AD垂直y軸,

SOAE×|3|,SODE×|k|,

SOAD+

ABCD的面積=2SOAD4

3+|k|4,

k0,

解得k1,

故答案為1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場(chǎng)需求,某超市在五月初五端午節(jié)來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.

1)試求出每天的銷售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤(rùn)P(元)最大?最大利潤(rùn)是多少?

3)為穩(wěn)定物價(jià),有關(guān)管理部門限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤(rùn),那么超市每天至少銷售粽子多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的中點(diǎn),,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿向終點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿折線向終點(diǎn)運(yùn)動(dòng),兩點(diǎn)速度均為每秒1個(gè)單位,兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后,運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)時(shí)間為的面積為(平方單位),則之間的圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于的直徑,點(diǎn)的延長(zhǎng)線上,延長(zhǎng)的延長(zhǎng)線于點(diǎn),點(diǎn)的中點(diǎn),

1)求證:的切線;

2)求證:是等腰三角形;

3)若,,求的值及的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的外接圓O的直徑,點(diǎn)PBC延長(zhǎng)線上,PAO的切線,且∠B=35°.

1)求∠PAC的度數(shù).

2)弦CEADAB于點(diǎn)F,若AFAB=12,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,在等腰直角三角形中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接,則的面積為__________;(請(qǐng)用含的式子表示的面積;提示:過點(diǎn)邊上的高

2)類比探究:如圖2,在一般的中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接.(1)中的結(jié)論是否成立,若成立,請(qǐng)說明理由.

3)拓展應(yīng)用:如圖3,在等腰三角形中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接.試直接用含的式子表示的面積.(不寫探究過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,外一點(diǎn),將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到,且點(diǎn)、三點(diǎn)在同一直線上.

1)(觀察猜想)

在圖①中, ;在圖②中, (用含的代數(shù)式表示)

2)(類比探究)

如圖③,若,請(qǐng)補(bǔ)全圖形,再過點(diǎn)于點(diǎn),探究線段,之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)(問題解決)

,,,求點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=-x2bxc與一直線相交于A(1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.

(1)求拋物線及直線AC的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)M(3m),求使MNMD的值最小時(shí)m的值;

(3)若拋物線的對(duì)稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過點(diǎn)EEFBD交拋物線于點(diǎn)F,以B,D,EF為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點(diǎn)E,AB15,D是⊙O上的點(diǎn),DCBM,與BM交于點(diǎn)C,⊙O的半徑為R30

1)求BE的長(zhǎng).

2)若BC15,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案