如圖,拋物線y=-x2-x+交x軸于A、B兩點,交y軸于C點,頂點為D.
(1)求點A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉(zhuǎn)180°,得四邊形AEBC,求點E的坐標,并判四邊形AEBC的形狀,并說明理由;
(3)在直線BC上是否存在一點P,使得△PAD周長最。咳舸嬖,請求出點P的坐標;若不存在請說明理由.

【答案】分析:(1)分別令x=0以及y=0求出A、B、C三點的坐標.
(2)依題意得出BC∥AE,又已知A、B、C的坐標易求出點E的坐標,又因為四邊形AEBC是平行四邊形且∠ACB=90°可得四邊形AEBC是矩形.
(3)作點A關(guān)于BC的對稱點A′,連接A′D與直線BC交于點P.則可得點P是使△PAD周長最小的點,然后求出直線A′D,直線BC的函數(shù)解析式聯(lián)立方程求出點P的坐標.
解答:解:(1)y=-x2-x+,
令x=0,得y=,
令y=0,
即-x2-x+=0,
即x2+2x-3=0,
∴x1=1,x2=-3
∴A,B,C三點的坐標分別為A(-3,0),B(1,0),C(0,);

(2)如圖1,過點E作EF⊥AB于F,
∵C(0,),
∴EF=,
∵B(1,0),
∴AF=1,
∴OF=OA-AF=3-1=2,
∴E(-2,-),
四邊形AEBC是矩形.
理由:四邊形AEBC是平行四邊形,且∠ACB=90°,

(3)存在.
D(-1,
如圖2,作出點A關(guān)于BC的對稱點A′,連接A′D與直線BC交于點P.
則點P是使△PAD周長最小的點.
∵AO=3,
∴FO=3,
CO=,
∴A′F=2
∴求得A′(3,2
過A′、D的直線y=x+,
過B、C的直線y=-x+,
將兩函數(shù)解析式聯(lián)立得出:

解得:,
故兩直線的交點P(-,).
點評:本題綜合考查了二次函數(shù)的有關(guān)知識以及利用待定系數(shù)法求出函數(shù)解析式以及利用軸對稱求線段最小值,利用軸對稱得出P點位置是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對稱;拋物線C1,C3關(guān)于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線的頂點坐標為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標;
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標;
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關(guān)于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習冊答案