【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.﹣a+b+c+d=﹣(a﹣b)﹣(﹣c﹣d)
B.x﹣(y﹣z)=x﹣y﹣z
C.x+2y﹣2z=x﹣2(z+y)
D.﹣(x﹣y+z)=﹣x﹣y﹣z
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要得到二次函數(shù)y=﹣x2+2x﹣2的圖象,需將y=﹣x2的圖象( 。
A.向左平移2個單位,再向下平移2個單位
B.向右平移2個單位,再向上平移2個單位
C.向左平移1個單位,再向上平移1個單位
D.向右平移1個單位,再向下平移1個單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知(a-3)x|a|-2+6=0是關(guān)于x的一元一次方程,則a的值是( )
A. 3 B. -3 C. ±3 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD相交于點(diǎn)O,AB=8,∠BAD=60°,點(diǎn)E從點(diǎn)A出發(fā),沿AB以每秒2個單位長度的速度向終點(diǎn)B運(yùn)動,當(dāng)點(diǎn)E不與點(diǎn)A重合時,過點(diǎn)E作EF⊥AD于點(diǎn)F,作EG∥AD交AC于點(diǎn)G,過點(diǎn)G作GH⊥AD交AD(或AD的延長線)于點(diǎn)H,得到矩形EFHG,設(shè)點(diǎn)E運(yùn)動的時間為t秒
(1)求線段EF的長(用含t的代數(shù)式表示);
(2)求點(diǎn)H與點(diǎn)D重合時t的值;
(3)設(shè)矩形EFHG與菱形ABCD重疊部分圖形的面積與S平方單位,求S與t之間的函數(shù)關(guān)系式;
(4)矩形EFHG的對角線EH與FG相交于點(diǎn)O′,當(dāng)OO′∥AD時,t的值為 ;當(dāng)OO′⊥AD時,t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N。
(1)求證:MN=AM+BN;
(2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A(0,8),C(6,0).動點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位長的速度沿射線BC方向勻速運(yùn)動,設(shè)運(yùn)動時間為t秒.
(1)當(dāng)t= s時,以O(shè)B、OP為鄰邊的平行四邊形是菱形;
(2)當(dāng)點(diǎn)P在OB的垂直平分線上時,求t的值;
(3)將△OBP沿直線OP翻折,使點(diǎn)B的對應(yīng)點(diǎn)D恰好落在x軸上,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com