點(diǎn)Pa, 1)與Q(-2, b)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則a, b的值分別是……………………(    )

   A.2,-1                     B.-2,1                   C.2,1                      D.―2,―1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1、2,已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)B(-1,0)、C(3,0),交y軸于點(diǎn)A.
(1)求此拋物線的解析式;
(2)如圖1,若M(0,1),過點(diǎn)A的直線與x軸交于點(diǎn)D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點(diǎn)D開始,沿射線DA方向勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為1個(gè)長(zhǎng)度單位/秒,在運(yùn)動(dòng)過程中腰FG與直線AD始終重合,設(shè)運(yùn)動(dòng)時(shí)間為t秒.當(dāng)t為何值時(shí),以M、O、H、E為頂點(diǎn)的四邊形是特殊的平行四邊形;
(3)如圖2,拋物線頂點(diǎn)為K,KI⊥x軸于I點(diǎn),一塊三角板直角頂點(diǎn)P在線段KI上滑動(dòng),且一直角邊過A點(diǎn),另一直角邊與x軸交于Q(m,0),請(qǐng)求出實(shí)數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=kx+3與x軸交于點(diǎn)A(-
32
,0)
,與y軸交于點(diǎn)B.
(1)求k的值和B點(diǎn)的坐標(biāo);
(2)過B點(diǎn)作直線BP與x軸交于點(diǎn)P,且使OP=2OA,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖,C是線段AB上一點(diǎn),△ACD和△BCE都是等腰直角三角形,∠ADC=∠CEB=90°
(1)連接DE、M、N分別是AC、BC上一點(diǎn),且∠MDC=∠CDE,∠NEC=∠CED,探索DM、DE、EN之間的數(shù)量關(guān)系,并說明理由.
(2)延長(zhǎng)AD、BE交于F點(diǎn),連接DE,CG⊥DE于G點(diǎn),連接CF,CF與DE相交于O點(diǎn),OC=OE,延長(zhǎng)GC到H點(diǎn),使得CH=CF,探索BF、BH的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,AB∥CD,∠DAB=90°,CD=
12
AB,4BC2=5AD2,
(1)求證:AD=AB.
(2)AC、BD交于點(diǎn)E,AO⊥BD交BD于O,交BC于F,求證:CE=CF.
(3)作點(diǎn)F交于點(diǎn)O的對(duì)稱點(diǎn)H,試判斷BH與AE的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB=AC,CD⊥AB,BE⊥AC,垂足分別為點(diǎn)D、E,CD與BE相交于點(diǎn)F,求證:AF平分∠BAC.

查看答案和解析>>

同步練習(xí)冊(cè)答案