【題目】畫圖,并完成填空:
已知直角三角形ABC,∠C=90°
(1)過點(diǎn)B作直線1平行于AC
(2)利用尺規(guī),畫出線段AC的垂直平分線EF,交AB于點(diǎn)E,AC于點(diǎn)F
(3)點(diǎn)A到點(diǎn)E的距離是線段 的長,點(diǎn)A到BC的距離是線段 的長,直線L與AC的距離是線段 的長
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式,能用平方差公式計(jì)算的是( 。
A.(2a+b)(2b﹣a)B.(+1)(﹣-1)
C.(2a﹣3b)(﹣2a+3b)D.(﹣a﹣2b)(﹣a+2b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀某同學(xué)解下面分式方程的具體過程.
解方程
解:①
②
③
∴④
∴.
把代入原方程檢驗(yàn)知是原方程的解.
請你回答:
(1)得到①式的做法是 ;
得到②式的具體做法是 ;
得到③式的具體做法是 ;
得到④式的根據(jù)是 .
(2)上述解答正確嗎?如果不正確,從哪一步開始出現(xiàn)錯誤?答: .錯誤的原因是 (若第一格回答“正確”的,此空不填).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ADC中,點(diǎn)B是邊DC上的一點(diǎn),∠DAB=∠C, .若△ADC的面積為18cm,求△ABC的面積.
【答案】10
【解析】試題分析:根據(jù)相似三角形的判定定理得到△ADC∽△BAD,根據(jù)相似三角形的面積比等于相似比的平方即可得到結(jié)論.
試題解析:∵∠DAB=∠C,∠D=∠D, ∴△ADC∽△BAD,
∴,
∵△ADC的面積為18cm2 ,
∴△BDA的面積為8cm2 ,
∴△ABC的面積=△ADC的面積﹣△BDA的面積=10cm2
【題型】解答題
【結(jié)束】
24
【題目】如圖,在網(wǎng)格圖中的△ABC與△DEF是否成位似圖形?說明理由.如果是,同時指出它們的位似中心.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.
(1)若∠MOE=27°,求∠AOC的度數(shù);
(2)當(dāng)∠BOD=x°(0<x<90)時,求∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一股民上星期五買進(jìn)某公司股票股,每股元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 |
星期三收盤時,每股是________元;
本周內(nèi)每股最高價為________元,每股最低價為________元;
已知該股民買進(jìn)股票時付了‰的手續(xù)費(fèi),賣出時還需付成交額‰的手續(xù)費(fèi)和‰的交易銳,如果該股民在星期五收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,連接BD,DE,BE,則下列結(jié)論:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正確的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com