【題目】如圖,點C是線段AB上一點,D是線段CB的中點,已知圖中所有的線段的長度之和為23,線段AC的長度與線段CB的長度都是正整數(shù),則線段AC長 .
【答案】3
【解析】解:設(shè)AC=y,CD=BD=x,則AC+CD+DB+AD+AB+CB=23,
即:y+x+x+(x+y)+(2x+y)+2x=23,
得:7x+3y=23,
因為線段AC的長度與線段CB的長度都是正整數(shù),
所以可知x最大為3,
可知:x=3,y為小數(shù),不符合;
x=2,y=3,符合題意;
x=1,y為小數(shù),不符合.
所以AC=3,
所以答案是:3.
【考點精析】認真審題,首先需要了解兩點間的距離(同軸兩點求距離,大減小數(shù)就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記).
科目:初中數(shù)學 來源: 題型:
【題目】學校需要購買一批籃球和足球,已知一個籃球比一個足球的進價高30元,買兩個籃球和三個足球一共需要510元.
(1)求籃球和足球的單價;
(2)根據(jù)實際需要,學校決定購買籃球和足球共100個,其中籃球購買的數(shù)量不少于足球數(shù)量的,學?捎糜谫徺I這批籃球和足球的資金最多為10500元.請問有幾種購買方案?
(3)若購買籃球x個,學校購買這批籃球和足球的總費用為y(元),在(2)的條件下,求哪種方案能使y最小,并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=c,AC=b.AD是△ABC的角平分線,DE⊥A于E,DF⊥AC于F,EF與AD相交于O,已知△ADC的面積為1.
(1)證明:DE=DF;
(2)試探究線段EF和AD是否垂直?并說明理由;
(3)若△BDE的面積是△CDF的面積2倍.試求四邊形AEDF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,OA=8,OC=4,沿對角線OB折疊后,點A與點D重合,OD與BC交于點E,則點D的坐標是( )
A.(4,8) B.(5,8) C.(,) D.(,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖線段AB=9,C、D、E分別為線段AB(端點A、B除外)上順次三個不同的點,圖中所有的線段和等于46,則下列結(jié)論一定成立的是( )
A.CD=3
B.DE=2
C.CE=5
D.EB=5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AD上一點,點B為CD的中點,且AD=8cm,BD=2cm.
(1)圖中共有多少條線段?
(2)求AC的長.
(3)若點E在直線AD上,且EA=3cm,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com