【題目】如果用+0.02 g表示一只乒乓球質(zhì)量超出標(biāo)準(zhǔn)質(zhì)量0.02 g,那么一只乒乓球質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量0.02 g記作( )
A. +0.02 g B. -0.02 g C. 0 g D. +0.04 g
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一旅客攜帶30千克行李,從某飛機(jī)場乘飛機(jī)返回故鄉(xiāng),按民航規(guī)定,旅客最多可免費(fèi)攜帶20千克的行李,超重的部分每千克按飛機(jī)票價(jià)格的1.5%購行李票,已知該旅客已購行李票60元,則他的飛機(jī)票價(jià)為( )
A. 300元 B. 400元 C. 600元 D. 800元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)利用描點(diǎn)法畫二次函數(shù)y=ax2+bx+c(a≠0)的圖象時(shí),列出的部分?jǐn)?shù)據(jù)如下表:經(jīng)檢查,發(fā)現(xiàn)表格中恰好有一組數(shù)據(jù)計(jì)算錯誤,請你根據(jù)上述信息寫出該二次函數(shù)的解析式:_____
x | 0 | 1 | 2 | 3 | 4 |
y | 3 | 0 | ﹣2 | 0 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知將一矩形紙片ABCD折疊,使頂點(diǎn)A與C重合,折痕為EF.
(1)求證:CE=CF;
(2)若AB =8 cm,BC=16 cm,連接AF,寫出求四邊形AFCE面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=x2﹣2x向下平移2個(gè)單位長度,再向右平移1個(gè)單位長度,則平移后的拋物線相應(yīng)的函數(shù)表達(dá)式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過程,請補(bǔ)充完整:
(1)在函數(shù)中,自變量x可以是任意實(shí)數(shù);
下表是y與x的幾組對應(yīng)值.
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | m | … |
求m的值;
在平面直角坐標(biāo)系xOy中,描出上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,寫出該函數(shù)的一條性質(zhì):__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場國慶節(jié)搞促銷活動,購物不超過200元不給優(yōu)惠,超過200(不含200元)元而不足500元,所有商品按購物價(jià)優(yōu)惠10%,超過500元的,其中500元按9折優(yōu)惠,超過的部分按8折優(yōu)惠,A,B兩個(gè)商品價(jià)格分別為180元,550元。
(1) 某人第一次購買一件A商品,第二次購買一件B商品,實(shí)際共付款多少元?
(2) 若此人一次購物購買A,B商品各一件,則實(shí)際付款多少錢?
(3) 國慶期間,某人在該商場兩次購物分別付款180元和550元,如果他合起來一次性購買同樣的商品,還可節(jié)約多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
1.新知學(xué)習(xí)
若把將一個(gè)平面圖形分為面積相等的兩個(gè)部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
2.解決問題
已知等邊三角形ABC的邊長為2.
(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;
(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且S△MOA=S△DOE.
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com