【題目】計(jì)算a(3+a)﹣3(a+2)= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣大力推進(jìn)義務(wù)教育均衡發(fā)展,加強(qiáng)學(xué)校標(biāo)準(zhǔn)化建設(shè),計(jì)劃用三年時(shí)間對(duì)全縣學(xué)校的設(shè)施和設(shè)備進(jìn)行全面改造,2016年縣政府已投資5億元人民幣,若每年投資的增長(zhǎng)率相同,預(yù)計(jì)2018年投資7.2億元人民幣,那么每年投資的增長(zhǎng)率為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=2是關(guān)于x的一元二次方程x2+(2m﹣1)x﹣3m=0的一個(gè)根,求m的值及方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,D是BC邊上一點(diǎn),∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過點(diǎn)B的切線AE與CD的延長(zhǎng)線交于點(diǎn)A,OE∥BD,交BC于點(diǎn)F,交AB于點(diǎn)E.
(1)求證:∠E=∠C;
(2)若⊙O的半徑為3,AD=2,試求AE的長(zhǎng);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個(gè)等式: a1==×(1) ;
第2個(gè)等式: a2==×() ;
第3個(gè)等式: a3==×() ;
第4個(gè)等式: a4==×() ;
…
請(qǐng)解答下列問題:
(1)按以上規(guī)律列出第6個(gè)等式: a6==.
(2)用含有 n 的代數(shù)式表示第 n 個(gè)等式: an==.( 為正整數(shù));
(3)求 a1+a2+a3+...+a100 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q,F;當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).設(shè)四邊形APFE的面積為y(cm2),則下列圖象中,能表示y與t的函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com