【題目】如圖,拋物線y=-x2+bx+c,與軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過(guò)點(diǎn)Dx軸的垂線,垂足為E,連接BD

()求拋物線的解析式及點(diǎn)D的坐標(biāo);

()點(diǎn)是拋物線上的動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)F坐標(biāo);

()若點(diǎn)Px軸上方拋物線上的動(dòng)點(diǎn),以PB為邊作正方形PBFG,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)FG恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).

【答案】()y=-x2+2x+6;()點(diǎn)的坐標(biāo)為;()點(diǎn)的橫坐標(biāo)為40

【解析】

(Ⅰ)B、C坐標(biāo)代入y=-x2+bx+c,解方程組求出b、c的值即可得拋物線解析式,把解析式變形為頂點(diǎn)式可得D點(diǎn)坐標(biāo);()過(guò)FFGx軸于點(diǎn)G,設(shè)F點(diǎn)坐標(biāo)為,利用△FBG∽△BDE,由相似三角形的性質(zhì)可得到關(guān)于F點(diǎn)坐標(biāo)的方程,即可求得F點(diǎn)的坐標(biāo);()設(shè),分Gy軸上、Fy軸上、Fy軸上,PC重合三種情況討論,根據(jù)正方形的性質(zhì)得出m的方程,求出m的值即可得P點(diǎn)橫坐標(biāo).

(Ⅰ)把點(diǎn)坐標(biāo)為(6,0),點(diǎn)坐標(biāo)為(06)代入拋物線y=-x2+bx+c

,解得

,

()如圖1,過(guò)軸于點(diǎn),

設(shè),則

,,

,

,,

,,,

,

,

當(dāng)點(diǎn)軸上方時(shí),有,解得(舍去),

此時(shí)點(diǎn)坐標(biāo)為

當(dāng)點(diǎn)軸下方時(shí),有,解得(舍去),

此時(shí)點(diǎn)坐標(biāo)為

綜上可知點(diǎn)的坐標(biāo)為

()設(shè),有三種情況:

如圖2,當(dāng)軸上時(shí),過(guò)P軸于,作PMx軸于

∵四邊形是正方形,

,,

≌△PMB,

,解得,()

的橫坐標(biāo)為

②當(dāng)軸上時(shí),如圖3,過(guò)PMx軸于M,

同理得:△PMB

OB=PM=6

,解得:(),

的橫坐標(biāo)為4

③當(dāng)軸上時(shí),如圖4,此時(shí)重合,此時(shí)的橫坐標(biāo)為0

綜上所述,點(diǎn)的橫坐標(biāo)為40

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)的運(yùn)動(dòng)服裝專柜,對(duì)兩種品牌的遠(yuǎn)動(dòng)服分兩次采購(gòu)試銷后,效益可觀,計(jì)劃繼續(xù)采購(gòu)進(jìn)行銷售.已知這兩種服裝過(guò)去兩次的進(jìn)貨情況如下表.

第一次

第二次

品牌運(yùn)動(dòng)服裝數(shù)/件

20

30

品牌運(yùn)動(dòng)服裝數(shù)/件

30

40

累計(jì)采購(gòu)款/元

10200

14400

1)問(wèn)兩種品牌運(yùn)動(dòng)服的進(jìn)貨單價(jià)各是多少元?

2)由于品牌運(yùn)動(dòng)服的銷量明顯好于品牌,商家決定采購(gòu)品牌的件數(shù)比品牌件數(shù)的倍多5件,在采購(gòu)總價(jià)不超過(guò)21300元的情況下,最多能購(gòu)進(jìn)多少件品牌運(yùn)動(dòng)服?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線,為常數(shù)且)經(jīng)過(guò)點(diǎn),頂點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線軸平行,且交于點(diǎn)的右側(cè)),與的對(duì)稱軸交于點(diǎn),直線經(jīng)過(guò)點(diǎn)

1)用表示及點(diǎn)的坐標(biāo);

2的值是否是定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由;

3)當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),求的值及點(diǎn),的坐標(biāo);

4)當(dāng)時(shí),設(shè)的外心為點(diǎn),則

①求點(diǎn)的坐標(biāo);

②若點(diǎn)的對(duì)稱軸上,其縱坐標(biāo)為,且滿足,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB=60°,點(diǎn)P為射線OA上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)PPEOB,交OB 于點(diǎn)E,點(diǎn)D在∠AOB內(nèi),且滿足∠DPA=OPE,DP+PE=6.

1)當(dāng)DP=PE時(shí),求DE的長(zhǎng);

2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,請(qǐng)判斷是否存在一個(gè)定點(diǎn)M,使得的值不變?并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)工會(huì)開展“一周工作量完成情況”調(diào)查活動(dòng),隨機(jī)調(diào)查了部分員工一周的工作量剩余情況,并將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如圖 1 和圖 2 所示的不完整統(tǒng)計(jì)圖

(1) 被調(diào)查員工的人數(shù)為  人:

(2) 把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3) 若該企業(yè)有員工 10000 人,請(qǐng)估計(jì)該企業(yè)某周的工作量完成情況為“剩少量”的員工有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是⊙的直徑,弦,點(diǎn)在弧上(不含端點(diǎn)), 連接

1)圖中有無(wú)和相等的線段,并證明你的結(jié)論.

2)求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABO的直徑,CO上的點(diǎn),連接AC、CB,過(guò)OEOCB并延長(zhǎng)EOF,使EOFO,連接AF并延長(zhǎng),AFCB的延長(zhǎng)線交于D.求證:AE2FGFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出遼陽(yáng)葫蘆島海濱觀光一日游項(xiàng)目,團(tuán)隊(duì)人均報(bào)名費(fèi)用y(元)與團(tuán)隊(duì)報(bào)名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88.旅行社收到的團(tuán)隊(duì)總報(bào)名費(fèi)用為w(元).

(1)直接寫出當(dāng)x≥20時(shí),yx之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)兒童節(jié)當(dāng)天旅行社收到某個(gè)團(tuán)隊(duì)的總報(bào)名費(fèi)為3000元,報(bào)名旅游的人數(shù)是多少?

(3)當(dāng)一個(gè)團(tuán)隊(duì)有多少人報(bào)名時(shí),旅行社收到的總報(bào)名費(fèi)最多?最多總報(bào)名費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AB為直徑作半圓O,點(diǎn)C是半圓上一點(diǎn),∠ABC的平分線交OE,DBE延長(zhǎng)線上一點(diǎn),且DEFE

1)求證:ADO切線;

2)若AB20,tanEBA,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案