【題目】探究題:

1)如圖1,若ABCD,則∠B+D=∠E,你能說明理由嗎?

2)反之,若∠B+D=∠E,直線AB與直線CD有什么位置關系?簡要說明理由;

3)若將點E移至圖2的位置,此時∠B、∠D、∠E之間有什么關系?直接寫出結論;

4)若將點E移至圖3的位置,此時∠B、∠D、∠E之間有什么關系?直接寫出結論.

【答案】1)見解析;(2ABCD,理由見解析;(3)∠E+B+D360°;(4)∠D+E=∠B

【解析】

1)首先作EFAB,根據(jù)ABCD,可得EFCD,據(jù)此分別判斷出∠B=∠1,∠D=∠2,即可判斷出∠B+D=∠E,據(jù)此解答即可.

2)首先作EFAB,即可判斷出∠B=∠1;然后根據(jù)∠E=∠1+2=∠B+D,可得∠D=∠2,據(jù)此判斷出EFCD,再根據(jù)EFAB,可得ABCD,據(jù)此判斷即可.

3)首先過EEFAB,即可判斷出∠BEF+B180°,然后根據(jù)EFCD,可得∠D+DEF180°,據(jù)此判斷出∠E+B+D360°即可.

4)首先根據(jù)ABCD,可得∠B=∠BFD;然后根據(jù)∠D+E=∠BFD,可得∠D+E=∠B,據(jù)此解答即可.

1)如圖1,作EFAB,

ABCD,

∴∠B=∠1

ABCD,EFAB

EFCD,

∴∠D=∠2,

∴∠B+D=∠1+2

又∵∠1+2=∠E,

∴∠B+D=∠E

2)如圖1,作EFAB

EFAB,

∴∠B=∠1,

∵∠E=∠1+2=∠B+D,

∴∠D=∠2,

EFCD,

又∵EFAB

ABCD

3)如圖2,過EEFAB,

EFAB,

∴∠BEF+B180°,

EFCD,

∴∠D+DEF180°

∵∠BEF+DEF=∠E,

∴∠E+B+D180°+180°360°

4)如圖3

ABCD,

∴∠B=∠BFD

∵∠D+E=∠BFD,

∴∠D+E=∠B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】同學們學過有理數(shù)減法可以轉化為有理數(shù)加法來運算,有理數(shù)除法可以轉化為有理數(shù)乘法來運算.其實這種轉化的數(shù)學方法,在學習數(shù)學時會經(jīng)常用到,通過轉化我們可以把一個復雜問題轉化為一個簡單問題來解決.

例如:計算

此題我們按照常規(guī)的運算方法計算比較復雜,但如果采用下面的方法把乘法轉化為減法后計算就變得非常簡單.

分析方法:

因為,,,

所以,將以上4個等式兩邊分別相加即可得到結果,解法如下:

1=

2)應用上面的方法計算:;

3)類比應用上面的方法探究并計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上兩點開始時所對應的數(shù)分別是6.兩點各自以一定的速度在數(shù)軸上運動,且點的運動速度為2個單位長度.

1)若點兩點初始時線段的中點,則點所表示的數(shù)是_____;

2兩點同時出發(fā)相向而行,在原點處相遇,求點的運動速度;

3)若兩點按(2)中的速度同時出發(fā),向數(shù)軸正方向運動,幾秒時兩點相距6個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點EBC邊的中點,動點MCD邊上運動,以EM為折痕將△CEM折疊得到△PEM,聯(lián)接PA,若AB=4,BAD=60°,則PA的最小值是(  )

A. B. 2 C. 2﹣2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學因式分解的結果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=mx2﹣8mx+12m(m0)與x軸交于A,B兩點(點B在點A的左側),與y軸交于點C,頂點為D,其對稱軸與x軸交于點E,聯(lián)接AD,OD.

(1)求頂點D的坐標(用含m的式子表示);

(2)若ODAD,求該拋物線的函數(shù)表達式;

(3)在(2)的條件下,設動點P在對稱軸左側該拋物線上,PA與對稱軸交于點M,若△AME與△OAD相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A在數(shù)軸上對應的數(shù)為3,點B對應的數(shù)為b,其中A、B兩點之間的距離為5

1)求b的值

2)當BA左側時,一點D從原點O出發(fā)以每秒2個單位的速度向左運動,請問D運動多少時間,可以使得DA、B兩點的距離之和為8?

3)當BA的左側時,一點DO出發(fā)以每秒2個單位的速度向左運動,同時點MB出發(fā),以每秒1個單位的速度向左運動,點NA出發(fā),以每秒4個單位的速度向右運動;在運動過程中,MN的中點為P,OD的中點為Q,請問MN-2PQ的值是否會發(fā)生變化?若發(fā)生變化,請說明理由;如果沒有變化,請求出這個值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學決定派3名教師帶名學生到某風景區(qū)舉行夏令營活動,甲旅行社收費標準為教師全票,學生半價優(yōu)惠;乙旅行社收費標準為教師和學生全部按全票價的6折優(yōu)惠.已知甲、乙兩旅行社的全票價均為240.

1)用代數(shù)式表示甲、乙兩旅行社的收費各是多少元?

2)當時,如果你是校長,你選擇哪一家旅行社?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,是直線________________被直線________所截得的________.

2是直線________________被直線________所截得的________.

3是直線________________被直線________所截得的________.

查看答案和解析>>

同步練習冊答案