【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)OBD的中點(diǎn),若M、N是邊AD上的兩點(diǎn),連接MO、NO,并分別延長(zhǎng)交邊BC于兩點(diǎn)M′、N′,則圖中的全等三角形共有( 。

A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)

【答案】C

【解析】試題分析:四邊形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD△BCD中,∵AB=BC,∠A=∠C,AD=CD,∴△ABD≌△BCD,∵AD∥BC∴∠MDO=∠M′BO,在△MOD△M′OB中,∵∠MDO=∠M'BO,∠MOD=∠M'OB,DM=BM',∴△MDO≌△M′BO,同理可證△NOD≌△N′OB,∴△MON≌△M′ON′,全等三角形一共有4對(duì).故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一些相同的房間需要粉刷墻面,一天3名師傅去粉刷8個(gè)房間,結(jié)果其中有40㎡墻面未來(lái)得及刷;同樣時(shí)間內(nèi)5名徒弟粉刷了9個(gè)房間的墻面,每名師傅比徒弟一天多刷30㎡墻面.

(1)求每個(gè)房間需要粉刷的墻面面積;

(2)張老板現(xiàn)有36個(gè)這樣的房間需要粉刷,若請(qǐng)1名師傅帶2名徒弟去,需幾天完成?

(3)已知每名師傅、徒弟每天的工資分別是85元、65元,張老板要求在3天內(nèi)(包括3天)完成36個(gè)房間的粉刷,問(wèn)如何在這8人中雇用人員(不一定8人全部雇用),才合算呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)分解因式: (2)分解因式: 9a2(x—y)+4b2(y—x)

(3)分解因式:(x2+y2)2-4x2y2 (4)利用分解因式計(jì)算求值:2662-2342

(5)利用分解因式計(jì)算求值:已知x-3y=-1,xy=2,x3y-6x2y2+9xy3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+1分別與x軸、y軸相交于點(diǎn)A、B,以點(diǎn)A為圓心、AB長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A1,再過(guò)點(diǎn)A1x軸的垂線交直線于點(diǎn)B1,以點(diǎn)A為圓心、AB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2……按此做法進(jìn)行下去,則點(diǎn)A8的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)國(guó)家發(fā)改委實(shí)施階梯電價(jià)的有關(guān)文件要求,三明市結(jié)合地方實(shí)際,決定對(duì)居民生活用電試行階梯電價(jià)收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)見(jiàn)表:

一戶居民一個(gè)月用電量的范圍

電費(fèi)價(jià)格(單位:元/千瓦時(shí))

不超過(guò)150千瓦時(shí)

a

超過(guò)150千瓦時(shí)的部分

b

20175月份,居民甲用電100度,交電費(fèi)80元;居民乙用電190度,交電費(fèi)160元.

(1)表中,a=   ,b=   

(2)試行階梯電價(jià)收費(fèi)以后,該市一戶居民20178月份平均電價(jià)每度為0.9元,求該用戶8月用電多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑為AB,點(diǎn)C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC已知點(diǎn)D在線段AB的反向延長(zhǎng)線上,過(guò)AC的中點(diǎn)F作線段GEDAC的平分線于E,BCG,AEBC

(1)求證ABC是等腰三角形;

(2)AE=8,AB=10,GC=2BG,ABC的周長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的兩根的倒數(shù)和為1,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,EAB的中點(diǎn),連接CE,連接DEACF,AD=4,AB=6.

(1)求證:△ADC∽△ACB;

(2)AC的值;

(3)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案