【題目】每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其擾,據(jù)測(cè)定,楊絮纖維的直徑約為0.0000105m,該數(shù)值用科學(xué)記數(shù)法表示為( )
A.1.05×105
B.1.05×105
C.0.105×105
D.10.5×104

【答案】B
【解析】解:0.0000105=1.05×105 ,
故選:B.
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10n , 與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在連接A地與B地的線段上有四個(gè)不同的點(diǎn)D,G,K,Q,下列四幅圖中的實(shí)線分別表示某人從A地到B地的不同行進(jìn)路線(箭頭表示行進(jìn)的方向),則路程最長(zhǎng)的行進(jìn)路線圖是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年3月國(guó)際風(fēng)箏節(jié)在銅仁市萬(wàn)山區(qū)舉辦,王大伯決定銷(xiāo)售一批風(fēng)箏,經(jīng)市場(chǎng)調(diào)研:蝙蝠型風(fēng)箏進(jìn)價(jià)每個(gè)為10元,當(dāng)售價(jià)每個(gè)為12元時(shí),銷(xiāo)售量為180個(gè),若售價(jià)每提高1元,銷(xiāo)售量就會(huì)減少10個(gè),請(qǐng)回答以下問(wèn)題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷(xiāo)售量y(個(gè))與售價(jià)x(元)之間的函數(shù)關(guān)系(12x30);

(2)王大伯為了讓利給顧客,并同時(shí)獲得840元利潤(rùn),售價(jià)應(yīng)定為多少?

(3)當(dāng)售價(jià)定為多少時(shí),王大伯獲得利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館擁有客房100間,經(jīng)營(yíng)中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與其價(jià)格x(元)(180x300)滿足一次函數(shù)關(guān)系,部分對(duì)應(yīng)值如表:

(1)求y與x之間的函數(shù)表達(dá)式;

(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每日空置的客房需支出各種費(fèi)用60元,當(dāng)房?jī)r(jià)為多少元時(shí),賓館當(dāng)日利潤(rùn)最大?求出最大值.(賓館當(dāng)日利潤(rùn)=當(dāng)日房費(fèi)收入﹣當(dāng)日支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠C=90°,∠A∶∠B=1∶2,則∠A=___度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)求值:
(1)(2a2+1﹣2a)﹣(a2﹣a+2)
(2)
(3)化簡(jiǎn)求值: ,其中x=﹣3,y=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某片果園有果樹(shù)80棵,現(xiàn)準(zhǔn)備多種一些果樹(shù)提高果園產(chǎn)量,但是如果多種樹(shù),那么樹(shù)之間的距離和每棵樹(shù)所受光照就會(huì)減少,單棵樹(shù)的產(chǎn)量隨之降低.若該果園每棵果樹(shù)產(chǎn)果y(千克),增種果樹(shù)x(棵),它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)在投入成本最低的情況下,增種果樹(shù)多少棵時(shí),果園可以收獲果實(shí)6750千克?

(3)當(dāng)增種果樹(shù)多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線AB與直線CD相交于點(diǎn)O,∠BOC=45°,
(1)如圖1,若EO⊥AB,求∠DOE的度數(shù);

(2)如圖2,若EO平分∠AOC,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.

(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN=AC;

(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于時(shí),求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.

查看答案和解析>>

同步練習(xí)冊(cè)答案