【題目】新定義:對于關(guān)于x的一次函數(shù)y=kx+bk≠0),我們稱函數(shù)y=為一次函數(shù)y=kx+b(k≠0)m變函數(shù)(其中m為常數(shù)).

例如:對于關(guān)于x的一次函數(shù)y=x+43變函數(shù)為y=

(1)關(guān)于x的一次函數(shù)y=-x+12變函數(shù)為,則當(dāng)x=4時,= ;

(2)關(guān)于x的一次函數(shù)y=x+21變函數(shù)為,關(guān)于x的一次函數(shù)y=-x-2-1變函數(shù)為,求函數(shù)和函數(shù)的交點坐標(biāo);

(3)關(guān)于x的一次函數(shù)y=2x+21變函數(shù)為,關(guān)于x的一次函數(shù)y=x-1,的m變函數(shù)為.

①當(dāng)-3≤x≤3時,函數(shù)的取值范圍是 (直接寫出答案):

②若函數(shù)和函數(shù)有且僅有兩個交點,則m的取值范圍是 (直接寫出答案).

【答案】(1)3;(2) 和(0,2;(3)8y14;2m

【解析】

1)根據(jù)m變函數(shù)的定義即可解決問題;
2)轉(zhuǎn)化為方程組解決問題即可;
3)①根據(jù)m變函數(shù)的定義,求出特殊點的函數(shù)值即可解決問題;
②利用方程組求出交點坐標(biāo)即可解決問題;

1)根據(jù)m變函數(shù)定義,關(guān)于x的一次函數(shù)y=﹣x+12變函數(shù)為:

,

x4時,y413,

故答案為3

2)根據(jù)定義得:y1,y2

則交點坐標(biāo)有:

,解得;

,解得;

,無解;

,無解;

綜上所述函數(shù)y1和函數(shù)y2的交點坐標(biāo)為和(0,2).

3)①由題意:y1,

x=﹣3時,y=﹣4,x3時,y=﹣8,

x1時,y4,

∴﹣8≤y1≤4

故答案為﹣8≤y1≤4

②由題意:y1y2,

易知兩個函數(shù)的交點(﹣2,﹣2),

觀察圖象可知:﹣2≤m時,函數(shù)y1和函數(shù)y2有且僅有兩個交點.

故答案為:﹣2≤m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=m,BC=n,將此矩形繞點B順時針方向旋轉(zhuǎn)θ(0°<θ<90°)得到矩形A1BC1D1,點A1在邊CD上.

(1)若m=2,n=1,求在旋轉(zhuǎn)過程中,點D到點D1所經(jīng)過路徑的長度;

(2)將矩形A1BC1D1繼續(xù)繞點B順時針方向旋轉(zhuǎn)得到矩形A2BC2D2,點D2BC的延長線上,設(shè)邊A2BCD交于點E,若=﹣1,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的邊長為2,點A在第一象限,點C在x軸正半軸上,AOC=60°,若將菱形OABC繞點O順時針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點B的對應(yīng)點B′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨州市新水一橋(如圖1)設(shè)計靈感來源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設(shè)計長度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫出最短的斜拉索DE和最長的斜拉索AC)均在同一水平面內(nèi),BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.

(1)求最短的斜拉索DE的長;

(2)求最長的斜拉索AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,有理數(shù)包括整數(shù)、有限小數(shù)和無限循環(huán)小數(shù),事實上,所有的有理數(shù)都可以化為分?jǐn)?shù)形式(整數(shù)可看作分母為1的分?jǐn)?shù)),那么無限循環(huán)小數(shù)如何表示為分?jǐn)?shù)形式呢?請看以下示例:

例:將化為分?jǐn)?shù)形式

由于=0.777…,設(shè)x=0.777…

則10x=7.777…

②﹣①得9x=7,解得x=,于是得=

同理可得=,=1+=1+

根據(jù)以上閱讀,回答下列問題:(以下計算結(jié)果均用最簡分?jǐn)?shù)表示)

(基礎(chǔ)訓(xùn)練)

(1)=   ,=   ;

(2)將化為分?jǐn)?shù)形式,寫出推導(dǎo)過程;

(能力提升)

(3)=   =   ;

(注:=0.315315…,=2.01818…)

(探索發(fā)現(xiàn))

(4)①試比較與1的大小:   1(填“>”、“<”或“=”)

若已知=,則=   

(注:=0.285714285714…)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在△ABC中,OBOC分別平分∠ABC和∠ACB,過ODEBC,分別交AB、AC于點D、E,若DE=8,則線段BD+CE的長為

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個單位,再向上平移4個單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點為點A.函數(shù)y=ax2+bx+c的圖象的頂點為點B,和x軸的交點為點C,D(點D位于點C的左側(cè)).

(1)求函數(shù)y=ax2+bx+c的解析式;

(2)從點A,C,D三個點中任取兩個點和點B構(gòu)造三角形,求構(gòu)造的三角形是等腰三角形的概率;

(3)若點M是線段BC上的動點,點N△ABC三邊上的動點,是否存在以AM為斜邊的Rt△AMN,使△AMN的面積為△ABC面積的?若存在,求tan∠MAN的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填入相應(yīng)的大括號內(nèi).

3,-,0.5,2π,3.14159265,-,1.103030030003…(

鄰兩個3之間依次多10).

(1) 有理數(shù)集合:{ };

(2) 無理數(shù)集合:{ };

(3) 實數(shù)集合:{ };

(4) 負(fù)實數(shù)集合:{ }.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,正方形DEFG的頂點D,G分別在AB,AC上,頂點E,F(xiàn)BC上.若ADG、BED、CFG的面積分別是1、3、1,則正方形的邊長為(

A. B. C. 2 D. 2

查看答案和解析>>

同步練習(xí)冊答案