【題目】如圖,在中,,,,半圓的直徑.點與點重合,半圓的速度從左向右移動,在運動過程中,點始終在所在的直線上.設(shè)運動時間為,半圓的重疊部分的面積為

1)當(dāng)時,設(shè)點是半圓上一點,點是線段上一點,則的最大值為_________的最小值為________

2)在平移過程中,當(dāng)點的中點重合時,求半圓重疊部分的面積

3)當(dāng)為何值時,半圓的邊所在的直線相切?

【答案】124cmcm;(2;(3

【解析】

(1)當(dāng)與點重合,點與點重合時,最大,此時如圖①,過點,與半圓交于點,此時最小,

,所以

(2)當(dāng)點的中點重合時,如圖②,點移動了,設(shè)半圓與交于點,連接、,,

(3)當(dāng)半圓與直線相切時,運動的距離為0或12,所以(秒或6(秒;當(dāng)半圓與直線相切時,如圖③,連接,則,,,移動的距離為,運動時間為(秒

解:解(1)當(dāng)與點重合,點與點重合時,最大,此時

如圖①,過點,與半圓交于點,此時最小,,

,

,

中,

,

故答案為,

(2)當(dāng)點的中點重合時,如圖②,點移動了,

設(shè)半圓與交于點,連接、

為直徑,

,

,

,

,,

(3)當(dāng)半圓與直線相切時,運動的距離為0或12,

(秒或6(秒;

當(dāng)半圓與直線相切時,如圖③,

連接,則,

,

,

移動的距離為,

運動時間為(秒,

綜上所述,當(dāng)為0或6或時,半圓的邊所在的直線相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn)

如圖均為等邊三角形,點在同一直線上,連接BE

填空:

的度數(shù)為______;

線段之間的數(shù)量關(guān)系為______.

拓展探究

如圖均為等腰直角三角形,,點在同一直線上,CMDE邊上的高,連接BE,請判斷的度數(shù)及線段之間的數(shù)量關(guān)系,并說明理由.

解決問題

如圖3,在正方形ABCD中,,若點P滿足,且,請直接寫出點ABP的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某建設(shè)工程隊計劃每小時挖掘土石方方,現(xiàn)決定租用甲、乙兩種型號的挖掘機來完成這項工作,已知一臺甲型挖掘機與一臺乙型挖掘機每小時共挖土方,臺甲型挖掘機與臺乙型挖掘機恰好能完成每小時的挖掘量.

1)求甲、乙兩種型號的挖掘機每小時各挖土多少方?

2)若租用一臺甲型挖掘機每小時元,租用一臺乙型挖掘機每小時元,且每小時支付的總租金不超過元,又恰好完成每小時的挖掘量,請設(shè)計該工程隊的租用方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚州漆器名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在中,,求作的外心,以下是甲、乙兩同學(xué)的作法:對于兩人的作法:

甲:如圖1,(1)作的垂直平分線

2)作的垂直平分線;

3,交于點,則點即為所求.

乙:如圖2,(1)作的平分線

2)作的垂直平分線;

3交于點,則點即為所求.

對于兩人的作法,正確的是(

A.兩人都對B.兩人都不對C.甲對,乙不對D.甲不對,乙對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季試銷售成本為每千克18元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元.經(jīng)試銷發(fā)現(xiàn),銷售量ykg)與銷售單價x(元/kg)符合一次函數(shù)關(guān)系,如圖是yx的函數(shù)關(guān)系圖象.

1)求yx的函數(shù)解析式;

2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小花在一次放風(fēng)箏活動中某時段的示意圖,她在A處時的風(fēng)箏線(整個過程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小花身高1.5米,當(dāng)她從點A跑動9米到達(dá)點B處時,風(fēng)箏線與水平線構(gòu)成45°角,此時風(fēng)箏到達(dá)點E處,風(fēng)箏的水平移動距離CF10米,這一過程中風(fēng)箏線的長度保持不變,求風(fēng)箏原來的高度C1D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,的中點,于點延長線一點,且

求證: 的切線:

已知,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xoy中,二次函數(shù)的圖象與x軸的交點為AB,頂點為C,點D為點C關(guān)于x軸的對稱點,過點A作直線lBD于點E,連接BC的直線交直線lK.

1)問:在四邊形ABKD內(nèi)部是否存在點P,使它到四邊形ABKD四邊的距離都相等?

若存在,請求出點P的坐標(biāo);若不存在,請說明理由;

2)若MN分別為直線AD和直線l上的兩個動點,連結(jié)DN,NM,MK,如圖2,求DN+NM+MK和的最小值.

查看答案和解析>>

同步練習(xí)冊答案