精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,拋物線y=+bx+c經過A,B兩點,拋物線的頂點為D.

(1)、求b,c的值;

(2)、點E是直角三角形ABC斜邊AB上一動點(點A、B除外),過點E作x軸的垂線交拋物線于點F,當線段EF的長度最大時,求點E的坐標;

(3)、在(2)的條件下:求以點E、B、F、D為頂點的四邊形的面積;在拋物線上是否存在一點P,使EFP是以EF為直角邊的直角三角形? 若存在,求出所有點P的坐標;若不存在,說明理由.

【答案】(1)、b=-2;c=-3;(2)、(,);(3)、;,

【解析】

試題分析:(1)、根據題意求出點A、點B的坐標,然后代入解析式求出b、c的值;(2)、射線求出直線AB的解析式,設出點E和F的坐標,求出EF的長度,然后根據函數的性質求出最值;(3)、首先求出點D和點F的坐標,將四邊形的面積轉化成BEF和DEF進行求解;過點E作aEF交拋物線與點P,設出點P的坐標,解出方程;過F作bEF交拋物線與點P,設出點P的坐標,解出方程.

試題解析:(1)由已知得:A(-1,0) B(4,5)二次函數y=+bx+c的圖像經過點A(-1,0)B(4,5)

解得:b=-2 c=-3

(2)、如圖:直線AB經過點A(-1,0) B(4,5) 直線AB的解析式為:y=x+1

二次函數y=-2x-3 設點E(t,t+1),則F(t,-2t-3)

EF=(t+1)-(-2t-3)=

時,EF的最大值= 點E的坐標為(,

如圖:

順次連接點E、B、F、D得四邊形EBFD.

可求出點F的坐標(,),點D的坐標為(1,-4)

S=S+S

==

如圖:)過點E作aEF交拋物線于點P,設點P(m,)則有:解得:, ,

)過點F作bEF交拋物線于,設(n,)則有:

解得: ,(與點F重合,舍去)

綜上所述:所有點P的坐標:,能使EFP組成以EF為直角邊的直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】寫出一個在三視圖中俯視圖與主視圖完全相同的幾何體

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若一個正多邊形的一個內角是140°,則這個正多邊形的邊數是( )

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法:①弦是直徑;②直徑是弦;③過圓心的線段是直徑;④一個圓的直徑只有一條.其中正確的是(填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算(﹣3x23的結果是(
A.9x5
B.﹣9x5
C.27x6
D.﹣27x6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】五邊形的外角和等于度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點P(-2,3)關于原點的對稱點Q的坐標為______________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖1,已知:在ABC中,BAC=90°,AB=AC,直線m經過點A,BD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖2,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m上,并且有BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

圖1 圖2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側),根據對稱性AMB恒為等腰三角形,我們規(guī)定:當AMB為直角三角形時,就稱AMB為該拋物線的完美三角形

(1)如圖2,求出拋物線完美三角形斜邊AB的長;

拋物線完美三角形的斜邊長的數量關系是

(2)若拋物線完美三角形的斜邊長為4,求a的值;

(3)若拋物線完美三角形斜邊長為n,且的最大值為-1,求m,n的值.

查看答案和解析>>

同步練習冊答案