【題目】求證:相似三角形對應邊上的中線之比等于相似比.

要求:①根據(jù)給出的△ABC及線段A'B′,A′(A′=A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;

②在已有的圖形上畫出一組對應中線,并據(jù)此寫出已知、求證和證明過程.

【答案】(1)作圖見解析;(2)證明見解析.

【解析】

(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;

(2)依據(jù)DAB的中點,D'A'B'的中點,即可得到,根據(jù)△ABC∽△A'B'C',即可得到,∠A'=∠A,進而得出△A'C'D'∽△ACD,可得

1)如圖所示,△A'B′C′即為所求;

2)已知,如圖,△ABC∽△A'B'C'=k,DAB的中點,D'A'B'的中點,

求證:=k

證明:∵DAB的中點,D'A'B'的中點,

AD=AB,A'D'=A'B',

,

∵△ABC∽△A'B'C',

,∠A'=A,

,∠A'=A,

∴△A'C'D'∽△ACD,

=k

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,在在△ABC中,已知∠BAC=900,AB=AC,DBC上,且BD=BA,點EBC的延長線上,CE=CA,求∠DAE的度數(shù);

(2)如果把(1)中的“AB=AC”條件去掉,其余條件不變,那么∠DAE的度數(shù)改變嗎?為什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余條件不變,試探究∠DAE∠BAC的數(shù)量關(guān)系式,試證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD位于直角坐標系中,AB=2,點D(0,1),以點C為頂點的拋物線y=ax2+bx+c經(jīng)過x軸正半軸上的點A,B,CE⊥x軸于點E.

(1)求點A,B,C的坐標.

(2)將該拋物線向上平移m個單位恰好經(jīng)過點D,且這時新拋物線交x軸于點M,N.

MN的長.

P是新拋物線對稱軸上一動點,將線段AP繞點A順時針旋轉(zhuǎn)60°AQ,則OQ的最小值為   (直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出件,每件盈利元.為了擴大銷售,增加盈利,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),在一定范圍內(nèi),襯衫的單價每下降元,商場平均每天可多售出件.

如果商場通過銷售這批襯衫每天獲利元,那么襯衫的單價應下降多少元?

當每件襯衫的單價下降多少元時,每天通過銷售襯衫獲得的利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 Rt 中,, ,點 為射線 上一點,連接 ,過點 作線段 的垂線 ,在直線 上,分別在點 的兩側(cè)截取與線段 相等的線段 ,連接

1)當點 在線段 上時(點 不與點 , 重合),如圖1,

①請你將圖形補充完整;

②線段 所在直線的位置關(guān)系為 ,線段 , 的數(shù)量關(guān)系為

2)當點 在線段 的延長線上時,如圖2

①請你將圖形補充完整;

②在(1)中②問的結(jié)論是否仍然成立?如果成立請進行證明,如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEFABBCF,交ACE,過點OODBCD,下列四個結(jié)論:

①∠AOB90°+C;

AE+BFEF;

③當∠C90°時,EF分別是ACBC的中點;

④若ODaCE+CF2b,則SCEFab

其中正確的是(  )

A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,ABEF點,若點DBC邊的中點,點M為線段EF上一動點,則CDM的周長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,長方形ABCD中,AB=4BC=,點E是折線ADC上的一個動點(點E與點A不重合),點P是點A關(guān)于BE的對稱點.在點E運動的過程中,使△PCB為等腰三角形的點E的位置共有(  )

A.4B.5C.6D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用硬紙板剪一個平行四邊形ABCD,作出它的對角線的交點O,我們可以做如下操作:

用大頭針把一根平放在平行四邊形上的直細木條固定在點O處,并使細木條可以繞點O轉(zhuǎn)動,撥動細木條,它可以停留在任意位置. 如果設細木條與一組對邊AB,CD的交點分別為點E,F,則下列結(jié)論:①OE=OF;②AE=CF;③BE=DF;④AOE≌△COF,其中一定成立的是_________________________(填寫序號即可).

查看答案和解析>>

同步練習冊答案