【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長AD到E,BE是⊙O的切線,B是切點.
(1)求證:∠EBD=∠CAB;
(2)若BC=,AC=5,求sin∠CBA.
【答案】(1)見解析(2)
【解析】(1)先根據等弦所對的劣弧相等,再由切線的性質和圓周角定理即可得出結論;
(2)利用三角形的中位線先求出OF,再用勾股定理求出半徑R.在Rt△ODF中,求出sin∠ODF的值,即可得出結論.
如圖1,連接OB.
∵BD=BC,∴∠CAB=∠BAD.
∵BE是⊙O的切線,∴∠EBD+∠OBD=90°.
∵AD是⊙O的直徑,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠BAD.
∵BD=BC,∴∠CAB=∠DAB,∴∠EBD=∠CAB.
(2)如圖2,設圓的半徑為R,連接CD.
∵AD為⊙O的直徑,∴∠ACD=90°.
∵BC=BD,∴OB⊥CD,∴OB∥AC.
∵OA=OD,∴OF=AC=2.5,∴BF=R-2.5,FD2=OD2-OF2= R2-2.52
在Rt△BFD中,∵BF2+FD2=BD2,∴,2R2-5R-3=0,
∴(2R+1)(R-3)=0.
∵R>0,∴R=3.
在Rt△ODF中,sin∠ODF===.
∵∠CBA=∠CDA,∴sin∠CBA=sin∠CDA= sin∠ODF=.
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中的每個小正方形邊長都是1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形.
(1)在圖1中,畫一個三角形,使它的三邊長都是有理數;
(2)在圖2中,畫一個三角形,使它的三邊長分別為3,2,;
(3)在圖3中,畫一個三角形,使它的三邊都是無理數,并且構成的三角形是直角三角形。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,完成下列問題:
(1)此次共調查了多少人?
(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數;
(3)請將條形統(tǒng)計圖補充完整;
(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABD、△CBD關于直線BD對稱,點E是BC上一點,線段CE的垂直平分線交BD于點F,連接AF、EF.
(1) 求證:AF=EF;
(2) 如圖2,連接AE交BD于點G.若EF∥CD,求證:;
(3) 如圖3,若∠BAD=90°,且點E在BF的垂直平分線上,tan∠ABD=,DF=,請直接寫出AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=a(x2-cx-2c2)(a>0)交x軸于A、B兩點(點A在點B的左側),交y軸于點C.
(1) 取A(-1,0),則點B的坐標為___________;
(2) 若A(-1,0),a=1,點P為第一象限的拋物線,以P為圓心,為半徑的圓恰好與AC相切,求P點坐標;
(3) 如圖,點R(0,n)在y軸負半軸上,直線RB交拋物線于另一點D,直線RA交拋物線于E.若DR=DB,EF⊥y軸于F,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地區(qū)教育部門為了解初中數學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據統(tǒng)計圖中的信息解答下列問題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統(tǒng)計圖中,“主動質疑”對應的圓心角為 度;
(3)將條形統(tǒng)計圖補充完整;
(4)如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①,已知△ABC為直角三角形,∠A=90°,若沿圖中虛線剪去∠A,則∠1+∠2等于( )
A.90° B.135° C.270° D.315°
(2)如圖②,已知△ABC中,∠A=40°,剪去∠A后成四邊形,則∠1+∠2=________°;
(3)根據(1)與(2)的求解過程,請你歸納猜想∠1+∠2與∠A的關系是______________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com