【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PEBC于點(diǎn)E,PFCD于點(diǎn)F,連接EF,給出下列五個(gè)結(jié)論:AP=EF;②APEF;③△APD一定是等腰三角形;④∠PFE=BAP;⑤PD=EC,其中正確結(jié)論的序號(hào)是______.

【答案】①②④⑤.

【解析】

PPGAB于點(diǎn)G,根據(jù)正方形對(duì)角線的性質(zhì)及題中的已知條件,證明AGP≌△FPE后即可證明①AP=EF;④∠PFE=BAP;在此基礎(chǔ)上,根據(jù)正方形的對(duì)角線平分對(duì)角的性質(zhì),在RtDPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=EC

證明:過PPGAB于點(diǎn)G,

∵點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),

GP=EP,

GPB中,∠GBP=45°,

∴∠GPB=45°

GB=GP,

同理,得PE=BE,

AB=BC=GF

AG=AB-GB,FP=GF-GP=AB-GB,

AG=PF

∴△AGP≌△FPE,

AP=EF,故①正確;

延長APEF上于一點(diǎn)H,

∴∠PAG=PFH

∵∠APG=FPH,

∴∠PHF=PGA=90°,即APEF,故②正確;

③∵點(diǎn)P是正方形ABCD的對(duì)角線BD上任意一點(diǎn),∠ADP=45度,

∴當(dāng)∠PAD=45度或67.5度或90度時(shí),APD是等腰三角形,

除此之外,APD不是等腰三角形,故③錯(cuò)誤.

∴∠PFE=BAP,故④正確;

GFBC,

∴∠DPF=DBC,

又∵∠DPF=DBC=45°

∴∠PDF=DPF=45°,

PF=DF=EC

∴在RtDPF中,DP2=DF2+PF2=EC2+EC2=2EC2

DP=EC,故⑤正確.

∴其中正確結(jié)論的序號(hào)是①②④⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,ABCD,點(diǎn)M為直線ABCD所確定的平面內(nèi)的一點(diǎn),若∠A105,∠M108,請(qǐng)直接寫出∠C的度數(shù) ;

2)如圖2,ABCD,點(diǎn)P為直線AB,CD所確定的平面內(nèi)的一點(diǎn),點(diǎn)E在直線CD上,AN平分∠PAB,射線AN的反向延長線交∠PCE的平分線于M,若∠P30,求∠AMC的度數(shù);

3)如圖3,點(diǎn)P與直線ABCD在同一平面內(nèi),AN平分∠PAB,射線AN的反向延長線交∠PCD的平分線于M,若AMC180P,求證:ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車,從入口處出發(fā),沿該公路開往草甸,途中?克郑ㄉ舷萝嚂r(shí)間忽略不計(jì)),第一班車上午8點(diǎn)發(fā)車,以后每隔10分鐘有一班車從入口處發(fā)車,小聰周末到該風(fēng)景區(qū)游玩,上午740到達(dá)入口處,因還沒到班車發(fā)車時(shí)間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林,離入口處的路程(米)與時(shí)間(分)的函數(shù)關(guān)系如圖2所示.

1)求第一班車從入口處到達(dá)塔林的時(shí)間.

2)小聰在塔林游玩40分鐘后,想坐班車到草甸,則小聰最早能夠坐上第幾班車?如果他坐這班車到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車速度均相同,小聰步行速度不變).

3)若小聰在830850之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時(shí)刻是隨機(jī)的,則他等車時(shí)間不超過3分鐘的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BCA=90°,AC=BC,BECF于點(diǎn)E,AFCF于點(diǎn)F,其中0<∠ACF45°.

(1)求證:BEC≌△CEA;

(2)AF=5,EF=8,BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點(diǎn)為A的拋物線y=a(x+2)2﹣4交x軸于點(diǎn)B(1,0),連接AB,過原點(diǎn)O作射線OM∥AB,過點(diǎn)A作AD∥x軸交OM于點(diǎn)D,點(diǎn)C為拋物線與x軸的另一個(gè)交點(diǎn),連接CD.

(1)求拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿著射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,問:當(dāng)t為何值時(shí),OB=AP;
(3)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿線段OD向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長度的速度沿線段CO向點(diǎn)O運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒,連接PQ.問:當(dāng)t為何值時(shí),四邊形CDPQ的面積最小?并求此時(shí)PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形

(2)CF=6,BF=8,DF=10,求證:AF是∠DAB的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△ABC沿EF對(duì)折,疊合后的圖形如圖所示.若∠A=60°,∠1=85°,則∠2的度數(shù)( )

A. 24°B. 25°C. 30°D. 35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AEBD,CFBD,EF分別為垂足.

1)求證:四邊形AECF是平行四邊形;

2)如果AE=3,EF=4,求AF、EC所在直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新房裝修后,甲居民購買家居用品的清單如下表,因污水導(dǎo)致部分信息無法識(shí)別,根據(jù)下表解決問題:

家居用品名稱

單價(jià)(元)

數(shù)量(個(gè))

金額(元)

掛鐘

30

2

60

垃圾桶

15

塑料鞋架

40

藝術(shù)字畫

a

2

90

電熱水壺

35

1

b

合計(jì)

8

280


(1)直接寫出a= , b=;
(2)甲居民購買了垃圾桶,塑料鞋架各幾個(gè)?
(3)若甲居民再次購買藝術(shù)字畫和垃圾桶兩種家居用品,共花費(fèi)150元,則有哪幾種不同的購買方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案