已知a2+a-3=0,那么a2(a+4)的值是


  1. A.
    9
  2. B.
    -12
  3. C.
    -18
  4. D.
    -15
A
分析:由a2+a-3=0,變形得到a2=-(a-3),a2+a=3,先把a(bǔ)2=-(a-3)代入整式得到a2(a+4)=-(a-3)(a+4),利用乘法得到原式=-(a2+a-12),再把a(bǔ)2+a=3代入計(jì)算即可.
解答:∵a2+a-3=0,
∴a2=-(a-3),a2+a=3,
a2(a+4)=-(a-3)(a+4)
=-(a2+a-12)
=-(3-12)
=9.
故選A.
點(diǎn)評(píng):本題考查了整式的混和運(yùn)算及其化簡(jiǎn)求值:先把已知條件變形,用底次代數(shù)式表示高次式,然后整體代入整式進(jìn)行降次,進(jìn)行整式運(yùn)算求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、已知a2+b2+c2-2a+4b-6c+14=O,則(a+b+c)2=
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:把形如ax2+bx+c的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫(xiě),即a2±2ab+b2=(a±b)2
例如:(x-1)2+3、(x-2)2+2x、(
1
2
x-2)2+
3
4
x2是x2-2x+4的三種不同形式的配方(即“余項(xiàng)”分別是常數(shù)項(xiàng)、一次項(xiàng)、二次項(xiàng)--見(jiàn)橫線上的部分).
請(qǐng)根據(jù)閱讀材料解決下列問(wèn)題:
(1)比照上面的例子,寫(xiě)出x2-4x+2三種不同形式的配方;
(2)將a2+ab+b2配方(至少兩種形式);
(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知
a2+a3+a4+a5
a1
=
a 1+a3+a4+a5
a 2
=
a1+a2+a4+a5
a3
=
a1+a2+a3+a5
a4
=
a1+a2+a3+a4
a5
=k
,且a1+a2+a3+a4+a5≠0,則k的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知
a
2
=
b
3
,求
3a+2b
a
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案