如圖,△ABC中,∠BAC=90°,AC=2,AB=,△ACD是等邊三角形.
(1)求∠ABC的度數(shù).
(2)以點A為中心,把△ABD順時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形.
(3)求BD的長度.
解:(1)根據(jù)勾股定理求得BC=4,在 Rt△ABC中AC=2∴°;
(2)如圖
(3)連接BE.
由(2)知:△ACE≌△ADB
∴AE=AB,∠BAE=60°,BD=EC
∴BE= AE=AB=,∠EBA=60°
∴∠EBC=90°
又BC=2AC=4
∴Rt△EBC中,EC=
∴
方法2:過點D作DF⊥BC,交BC延長線于點F,
則求得EF=
BF =5,
∴
方法3:過點D作DG⊥BA,交BA延長線于點G,按照方法2給分。
【解析】(1)利用正切的知識可得出答案.
(2)根據(jù)旋轉(zhuǎn)角度、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向找出各點的對稱點,順次連接即可;
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ACE≌△ADB,從而確定∠EBC=90°,然后利用勾股定理即可解答.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com